Journal of the Korean Regional Science Association
/
v.34
no.2
/
pp.65-77
/
2018
The purpose of this study is to compare and analyze factors in country risk between Cambodia and Vietnam. OECD and the Export-Import Ban of Korea assess country risk of Cambodia more highly than Vietnam. As results of the parametric tests for evaluation factors on the basis of country risk classification, the economic growth rate, the foreign trade index, and the foreign exchange reserves among the economic risks with the corruption index as the political and social risk have statistically significant effect on the difference between country risks of two countries. However, discriminant factor analysis indicates that the economic growth rate, the foreign exchange reserves, and the corruption index are key variables, which represent the difference between country risks of Cambodia and Vietnam. Consequently, the government of Cambodia needs to try to root out the corruption and to expand trade through increasing export for lowering the country risk to the level of Vietnam. Vietnam would also need to focus on attaining the sustainable high economic growth rate and increasing the foreign exchange reserves.
Communications for Statistical Applications and Methods
/
v.16
no.1
/
pp.103-113
/
2009
Weighting is a common form of unit nonresponse adjustment in sample surveys where entire questionnaires are missing due to noncontact or refusal to participate. A common approach computes the response weight as the inverse of the response rate within adjustment cells based on covariate information. In this paper, we consider the efficiency and robustness of nonresponse weight adjustment bated on the response propensity and predictive mean. In the simulation study based on 2000 Fishry Census in Korea, the root mean squared errors for assessing the various ways of forming nonresponse adjustment cell s are investigated. The simulation result suggest that the most important feature of variables for inclusion in weighting adjustment is that they are predictive of survey outcomes. Though useful, prediction of the propensity to response is a secondary. Also the result suggest that adjustment cells based on joint classification by the response propensity and predictor of the outcomes is productive.
Kim, Hwan;Park, Se-Seung;Choi, Youn-Ok;Cho, Geum-Bae;Kim, Pyoung-Ho
Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
/
v.20
no.7
/
pp.81-91
/
2006
Recently, G.A studies have studied and demonstrated that artificial intelligence like G.A networks, G.A PI controller. The design techniques of PI controller using G.A with the newly proposed teaming algorithm was presented, and the designed controller with AC servo motor system. The goal of this paper is to design the AC servo motor using genetic algorithm and to control drive robot. And in this paper, we propose a genetic algorithms approach to find an optimal or near optimal input variables for genetic algorithm PI controller. Our experimental results show that this approach increases overall classification accuracy rate significantly. Finally, we executed for the implementation of high performance speed control system. It is used a 16-bit DSP, IMS320LF2407, which is capable of the high speed and floating point calculation.
The augmented reality toy-game is a kind of new game genre that can be seen within the concept of augmented reality games, and it is a term to refer to the content or hardware that plays the game using the toy of the real world. This study aims to analyze the elements for the model of toy-game development based on the augmented reality. This study analyzed three characteristics of toy game which are different from other games based on existing related research. and have selected important factors to consider when developing augmented reality toy-game. A questionnaire was conducted to determine the suitability of the development elements derived, and the analysis and verification of the factors derived using an exploratory analysis method. As a result, it showed a reasonable outcome of the selection of variables, with the exception of some of the questions, and the classification results of the multi-dimensional scaling methods were also classified as reasonable in the clustering analyses.
Background: The classification of foot type can be commonly determined by the height of the media longitudinal arch. The normalized arch height (NAH) is defined as the ratio of navicular or instep heights to the foot length or instep length. Objects: This study investigated the relationships among foot characteristics, such as foot length (FL), instep length (IL), navicular height (NH), and instep height (IH), in Korean young adults. Also, the distribution of foot type based on calculated NAH was assessed. Methods: Three-dimensional foot scanning data of young adults aged 20 to 39 years (total: 1,978; 974 male, 1,004 female) were obtained from the Korea Technology Standards Institute, and used for analyses. NAH was calculated as the following: NH/FL, IH/FL, IH/IL, NH/IL. Spearman's rank order correlation was used to identify correlations among variables. The Mann-Whitney U-test and chi-square test were used to compare the sex differences in foot characteristics and distribution of foot type. Results: FL and IL showed a very high correlation (r = 0.94). The correlations between FL or IL and IH (r = 0.50-0.57) were greater than those between FL or IL and NH (r = 0.23-0.72). Males had significantly larger values than females (p < 0.001), and the frequency of pes planus was significantly higher in females than in males (χ2 = 50.09, p < 0.001). Based on the IH/IL index, the neutral foot, pes planus and pes cavus distributed by 16%, 78%, and 6% respectively. Conclusion: Our results on foot arch distribution could be used as basic data in clinical or footwear fields, and our data on differences in arch structure according to sex may facilitate understanding of why injury to the lower limbs differs between males and females.
Bankruptcy prediction has been one of the important research topics in finance since 1960s. In Korea, it has gotten attention from researchers since IMF crisis in 1998. This study aims at proposing a novel model for better bankruptcy prediction by converging three techniques - support vector machine(SVM), fuzzy theory, and genetic algorithm(GA). Our convergence model is basically based on SVM, a classification algorithm enables to predict accurately and to avoid overfitting. It also incorporates fuzzy theory to extend the dimensions of the input variables, and GA to optimize the controlling parameters and feature subset selection. To validate the usefulness of the proposed model, we applied it to H Bank's non-external auditing companies' data. We also experimented six comparative models to validate the superiority of the proposed model. As a result, our model was found to show the best prediction accuracy among the models. Our study is expected to contribute to the relevant literature and practitioners on bankruptcy prediction.
If a transient occurs in a nuclear power plant (NPP), operators will try to protect the NPP by estimating the kind of abnormality and mitigating it based on recommended procedures. Similarly, operators take actions based on severe accident management guidelines when there is the possibility of a severe accident occurrence in an NPP. In any such situation, information about the occurrence time of severe accident-related events can be very important to operators to set up severe accident management strategies. Therefore, support systems that can quickly provide this kind of information will be very useful when operators try to manage severe accidents. In this research, the occurrence times of several events that could happen during a severe accident were predicted using support vector machines with short time variations of plant status variables inputs. For the preliminary step, the break location and size of a loss of coolant accident (LOCA) were identified. Training and testing data sets were obtained using the MAAP5 code. The results show that the proposed algorithm can correctly classify the break location of the LOCA and can estimate the break size of the LOCA very accurately. In addition, the occurrence times of severe accident major events were predicted under various severe accident paths, with reasonable error. With these results, it is expected that it will be possible to apply the proposed algorithm to real NPPs because the algorithm uses only the early phase data after the reactor SCRAM, which can be obtained accurately for accident simulations.
Purpose - It is a very important issue for the Korean tourism industry to increase tourism revenue by attracting foreign tourists. Although Japanese tourists have been an important part of the Korean tourism industry for a long time, the level of tourist satisfaction including accommodation has been at the worst compared to other foreign visitors, which strongly requires concrete solutions. Therefore, this study focuses on improving the satisfaction level of Japanese visitors in the use of accommodation, and find out the influence of the managerial response. Research design, data, and methodology - In this study, customer review and managerial response of hotels in Seoul were collected from "Rakuten Travel" which is the most representative online travel agency in Japan. As a result of collecting data from 2016 to 2018, 6,190 customer reviews and 1,241 managerial responses from 120 hotels were used for analysis. In addition, information on the properties of 120 hotels, such as the number of rooms, classification, types of hotel facilities, types of room facilities, accessibility and prices, were collected. To test the hypotheses, moderated multiple regression analysis was conducted with SPSS 22.0. Results - It was found that only 25 sites, 20.8% of the total 120 sites, were implementing managerial response and average response rate was 66.42% among them. As a result of examining the main effects of the hotel attributes on the ratings, accessibility and price are confirmed as effective variables. We also found that the response rate has a significant moderate effect in both the accessibility and price. In other words, there was a significant difference in the influence of accessibility and price on the ratings depending on the response rate. Also, it was confirmed that the response rate is not a pure moderator variable but a quasi moderator variable. Overall, the evidences partially supported the hypothesis. Conclusion - It was possible to provide important suggestions to the hotel managers who were concerned about managing tourist satisfaction with accessibility problems. It was found that the accessibility problem could be overcome by increasing the response rate. It was also confirmed that high ratings can be more effectively achieved for high priced hotels by increasing the response rate.
Purpose Various machine learning techniques are used to implement for predicting corporate credit. However, previous research doesn't utilize time series input features and has a limited prediction timing. Furthermore, in the case of corporate bond credit rating forecast, corporate sample is limited because only large companies are selected for corporate bond credit rating. To address limitations of prior research, this study attempts to implement a predictive model with more sample companies, which can adjust the forecasting point at the present time by using the credit score information and corporate information in time series. Design/methodology/approach To implement this forecasting model, this study uses the sample of 2,191 companies with KIS credit scores for 18 years from 2000 to 2017. For improving the performance of the predictive model, various financial and non-financial features are applied as input variables in a time series through a sliding window technique. In addition, this research also tests various machine learning techniques that were traditionally used to increase the validity of analysis results, and the deep learning technique that is being actively researched of late. Findings RNN-based stateful LSTM model shows good performance in credit rating prediction. By extending the forecasting time point, we find how the performance of the predictive model changes over time and evaluate the feature groups in the short and long terms. In comparison with other studies, the results of 5 classification prediction through label reclassification show good performance relatively. In addition, about 90% accuracy is found in the bad credit forecasts.
This study is a railway accident investigation statistic study with the purpose of prediction and classification of accident severity. Linear regression models have some difficulties in classifying accident severity, but a logistic regression model can be used to overcome the weaknesses of linear regression models. The logistic regression model is applied to escalator (E/S) accidents in all stations on 5~8 lines of the Seoul Metro, using data mining techniques such as logistic regression analysis. The forecasting variables of E/S accidents in urban railway stations are considered, such as passenger age, drinking, overall situation, behavior, and handrail grip. In the overall accuracy analysis, the logistic regression accuracy is explained 76.7%. According to the results of this analysis, it has been confirmed that the accuracy and the level of significance of the logistic regression analysis make it a useful data mining technique to establish an accident severity prediction model for urban railway casualty accidents.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.