The purpose of this paper is to develop a new classification method for predicting consumer choice based on genetic algorithm, and to validate Its prediction power over existing methods. To serve this purpose, we propose a hybrid model, and discuss Its methodological characteristics in comparison with other existing classification methods. Also, we conduct a series of experiments employing survey data of consumer choices of MP3 players to assess the prediction power of the model. The results show that the suggested model in this paper is statistically superior to the existing methods such as logistic regression model, artificial neural network model and decision tree model in terms of prediction accuracy. The model is also shown to have an advantage of providing several strategic information of practical use for consumer choice.
The purpose of this paper is to develop a new classification method for predicting consumer choice based on genetic algorithm, and to validate its prediction power over existing methods. To serve this purpose, we propose a hybrid model, and discuss its methodological characteristics in comparison with other existing classification methods. Also, to assess the prediction power of the model, we conduct a series of experiments employing survey data of consumer choices of MP3 players. The results show that the suggested model in this paper is statistically superior to the existing methods such as logistic regression model, artificial neural network model and decision tree model in terms of prediction accuracy. The model is also shown to have an advantage of providing several strategic information of practical use for consumer choice.
Journal of the Korean Data and Information Science Society
/
제22권4호
/
pp.671-678
/
2011
데이터마이닝은 방대한 양의 데이터 속에서 쉽게 드러나지 않는 유용한 정보를 찾아내는 기법으로서 의사결정나무, 연관 규칙, 군집분석, 신경망 분석 등의 기법이 있으며, 이중 의사결정나무 알고리즘은 의사결정 규칙을 도표화하여 관심대상이 되는 집단을 몇 개의 소집단으로 분류하거나 예측을 수행하는 방법으로서 고객세분화, 고객 분류, 문제 예측 등의 여러 분야에서 유용하게 활용되고 있다. 일반적으로 의사결정나무의 모형 생성 시, 모형 생성의 기준 및 입력 변수의 수에 따라 복잡한 모형이 생성되기도 하며 특히 입력 변수의 수가 많을 경우 종종 모형 생성 및 해석에 있어 어려움을 격기도 한다. 이에 본 논문에서는 의사결정나무 생성 시, 입력 변수에 대한 매개 관계를 파악하여 나무 생성에 불필요한 입력 변수를 제거하는 방법을 제시하고 그 효율성을 파악하기 위하여 실제 자료에 적용하고자 한다.
Hand gesture is one of the most popular communication methods in everyday life. In human-computer interaction applications, hand gesture recognition provides a natural way of communication between humans and computers. There are mainly two methods of hand gesture recognition: glove-based method and vision-based method. In this paper, we propose a vision-based hand gesture recognition method using Kinect. By using the depth information is efficient and robust to achieve the hand detection process. The finger labeling makes the system achieve pose classification according to the finger name and the relationship between each fingers. It also make the classification more effective and accutate. Two kinds of gesture sets can be recognized by our system. According to the experiment, the average accuracy of American Sign Language(ASL) number gesture set is 94.33%, and that of general gestures set is 95.01%. Since our system runs in real-time and has a high recognition rate, we can embed it into various applications.
This paper aims to study a method to estimate precise carbon absorption by quantification of forest information that uses accurate LiDAR data, hyperspectral image. To estimate precise carbon absorption value by using spatial data, a problem was found out of carbon absorption value estimation method with statistical method, which is already existed method, and then offered optimized carbon absorption estimation method with spatial information by analyzing with methods of compare digital aerial photogrammetry and LiDAR data. It turned out possible Precise classification and quantification in case of using LiDAR and hyperspectral image. Various classification of tree species was possible with use of LiDAR and hyperspectral image. Classification of hyperspectral image was matched in general with field survey and Mahalanobis distance classification method. Precise forest resources could be extracted using high density LiDAR data. Compared with existing method, 19.7% in forest area, 19.2% in total carbon absorption, 0.9% in absorption per unit area of difference created, and improvement was found out to be estimated precisely in international code.
The purpose of this study is to identify the maturity stages of venture firms through classification analysis, which is widely used as a big data technique. Venture companies should develop a competitive advantage in the market. And the maturity stage of a company can be classified into five stages. I will analyze a difference in the growth stage of venture firms between the survey response and the statistical classification methods. The firm growth level distinguished five stages and was divided into the period of start-up and declines. A classification method of big data uses popularly k-mean cluster analysis, hierarchical cluster analysis, artificial neural network, and decision tree analysis. I used variables that asset increase, capital increase, sales increase, operating profit increase, R&D investment increase, operation period and retirement number. The research results, each big data analysis technique showed a large difference of samples sized in the group. In particular, the decision tree and neural networks' methods were classified as three groups rather than five groups. The groups size of all classification analysis was all different by the big data analysis methods. Furthermore, according to the variables' selection and the sample size may be dissimilar results. Also, each classed group showed a number of competitive differences. The research implication is that an analysts need to interpret statistics through management theory in order to interpret classification of big data results correctly. In addition, the choice of classification analysis should be determined by considering not only management theory but also practical experience. Finally, the growth of venture firms needs to be examined by time-series analysis and closely monitored by individual firms. And, future research will need to include significant variables of the company's maturity stages.
사상의학은 체질에 따라 치료하는 방법을 달리하므로, 체질진단의 객관화가 절실히 요구되고 있다. 본 연구는 맥파를 이용하여 사상체질을 객관적으로 진단함에 있어서, 정확도가 높으면서 실용적인 체질분류 방법을 탐색하는 것이 목적이다. 한방병원에 건강검진을 목적으로 내원한 2848명의 피험자를 대상으로 전문의가 진단한 체질, 체질량지수, 혈압, 맥파 자료를 입수하였다. 자료의 선별과정을 통하여 최종적으로 1635명의 자료를 분석에 사용하였다. 판별분석, 회귀분석, 의사결정나무, 신경망으로 체질을 예측하고 전문의가 진단한 결과와 비교하여 분류방법의 정확도를 비교하였다. 판별분석은 체질별로 공분산 행렬이 동일해야 한다는 가정을 만족시키기 어려웠으며, 체질량지수를 고려하지 않은 의사결정나무와 신경망 분석의 결과는 분석표본의 변동에 민감했다. 체질분류에 결정적인 영향을 미치는 변수인 체질량지수가 고려된 로지스틱 회귀분석 또는 의사결정나무 방법이 체질분류 방법으로 추천할 만하다.
본 연구에서는 기계학습 기법의 한 갈래인 로지스틱 회귀모형과 의사결정나무 모형을 이용하여 인공위성 영상에서 Cochlodinium polykrikoides 적조 픽셀을 탐지하는 방법을 제안한다. 학습자료로 적조, 청수, 탁수해역에서 추출된 수출광량 분광 프로파일(918개)을 활용하였다. 전체 데이터셋의 70%를 추출하여 모형 학습에 활용하였으며, 나머지 30%를 이용하여 모형의 분류 정확도를 평가하였다. 정확도 평가 결과 로지스틱 회귀모형은 약 97%의 분류 정확도를 보였으며, 의사결정나무 모형은 약 86%의 분류 정확도를 보였다.
기존의 내용기반 스팸메일 분류는 전자메일이 이미지를 많이 가지고 있고 텍스트는 적게 가지고 있을 경우에는 내용을 분석하기 어려우므로 스팸메일을 분류하는 데 한계가 있다. 이와 같은 문제를 해결하기 위하여 본 논문에서는 전자메일의 구조를 분석하는 링크구조분석 스팸메일 분류 알고리즘을 제안한다. 이것은 전자메일 안의 하이퍼링크의 개수와 하이퍼링크가 가리키는 웹 문서들이 다른 웹 문서에 의해 링크된 수를 측정하여 전자메일의 중요도를 계산한 후 의사결정트리를 학습하여 스팸메일과 정상메일을 분류한다. 또한 위의 링크구조분석 알고리즘과 하이퍼링크의 서버 주소만을 이용한 변형된 링크구조 분석 알고리즘, 그리고 SVM(support vector machine)을 이용한 내용기반 방법을 다수결 원칙으로 결합한 통합 스팸메일 분류 시스템을 제안한다. 실험 결과, 제안한 링크구조분석 알고리즘은 기존의 내용기반 방법 보다 스팸메일 분류 정확도가 94.8%로 약간 향상되었으며 또한 통합 스팸메일 분류 시스템도 내용기반 방법과 비교하여 향상된 97.7%를 나타냈다.
Both the neural network classifier utilizing multi-layer perceptron and the linear tree classifier composed of hierarchically structured linear discriminating functions can form arbitrarily complex decision boundaries in the feature space and have very similar decision making processes. In this paper, a new method for automatically choosing the number of neurons in the hidden layers and for initalzing the connection weights between the layres and its supporting theory are presented by mapping the sequential structure of the linear tree classifier to the parallel structure of the neural networks having one or two hidden layers. Experimental results on the real data obtained from the military ship images show that this method is effective, and that three exists no siginificant difference in the classification acuracy of both classifiers.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.