• 제목/요약/키워드: Classification Tree Method

검색결과 360건 처리시간 0.026초

유전 알고리듬 기반 제품구매예측 모형의 개발 (A GA-based Classification Model for Predicting Consumer Choice)

  • 민재형;정철우
    • 한국경영과학회지
    • /
    • 제34권3호
    • /
    • pp.29-41
    • /
    • 2009
  • The purpose of this paper is to develop a new classification method for predicting consumer choice based on genetic algorithm, and to validate Its prediction power over existing methods. To serve this purpose, we propose a hybrid model, and discuss Its methodological characteristics in comparison with other existing classification methods. Also, we conduct a series of experiments employing survey data of consumer choices of MP3 players to assess the prediction power of the model. The results show that the suggested model in this paper is statistically superior to the existing methods such as logistic regression model, artificial neural network model and decision tree model in terms of prediction accuracy. The model is also shown to have an advantage of providing several strategic information of practical use for consumer choice.

유전 알고리듬 기반 제품구매예측 모형의 개발 (A GA-based Classification Model for Predicting Consumer Choice)

  • 민재형;정철우
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2008년도 추계학술대회 및 정기총회
    • /
    • pp.1-7
    • /
    • 2008
  • The purpose of this paper is to develop a new classification method for predicting consumer choice based on genetic algorithm, and to validate its prediction power over existing methods. To serve this purpose, we propose a hybrid model, and discuss its methodological characteristics in comparison with other existing classification methods. Also, to assess the prediction power of the model, we conduct a series of experiments employing survey data of consumer choices of MP3 players. The results show that the suggested model in this paper is statistically superior to the existing methods such as logistic regression model, artificial neural network model and decision tree model in terms of prediction accuracy. The model is also shown to have an advantage of providing several strategic information of practical use for consumer choice.

  • PDF

매개 변수를 이용한 의사결정나무 생성에 관한 연구 (A study on decision tree creation using intervening variable)

  • 조광현;박희창
    • Journal of the Korean Data and Information Science Society
    • /
    • 제22권4호
    • /
    • pp.671-678
    • /
    • 2011
  • 데이터마이닝은 방대한 양의 데이터 속에서 쉽게 드러나지 않는 유용한 정보를 찾아내는 기법으로서 의사결정나무, 연관 규칙, 군집분석, 신경망 분석 등의 기법이 있으며, 이중 의사결정나무 알고리즘은 의사결정 규칙을 도표화하여 관심대상이 되는 집단을 몇 개의 소집단으로 분류하거나 예측을 수행하는 방법으로서 고객세분화, 고객 분류, 문제 예측 등의 여러 분야에서 유용하게 활용되고 있다. 일반적으로 의사결정나무의 모형 생성 시, 모형 생성의 기준 및 입력 변수의 수에 따라 복잡한 모형이 생성되기도 하며 특히 입력 변수의 수가 많을 경우 종종 모형 생성 및 해석에 있어 어려움을 격기도 한다. 이에 본 논문에서는 의사결정나무 생성 시, 입력 변수에 대한 매개 관계를 파악하여 나무 생성에 불필요한 입력 변수를 제거하는 방법을 제시하고 그 효율성을 파악하기 위하여 실제 자료에 적용하고자 한다.

A Decision Tree based Real-time Hand Gesture Recognition Method using Kinect

  • Chang, Guochao;Park, Jaewan;Oh, Chimin;Lee, Chilwoo
    • 한국멀티미디어학회논문지
    • /
    • 제16권12호
    • /
    • pp.1393-1402
    • /
    • 2013
  • Hand gesture is one of the most popular communication methods in everyday life. In human-computer interaction applications, hand gesture recognition provides a natural way of communication between humans and computers. There are mainly two methods of hand gesture recognition: glove-based method and vision-based method. In this paper, we propose a vision-based hand gesture recognition method using Kinect. By using the depth information is efficient and robust to achieve the hand detection process. The finger labeling makes the system achieve pose classification according to the finger name and the relationship between each fingers. It also make the classification more effective and accutate. Two kinds of gesture sets can be recognized by our system. According to the experiment, the average accuracy of American Sign Language(ASL) number gesture set is 94.33%, and that of general gestures set is 95.01%. Since our system runs in real-time and has a high recognition rate, we can embed it into various applications.

A Comparative Study of Carbon Absorption Measurement Using Hyperspectral Image and High Density LiDAR Data in Geojedo

  • Choi, Byoung Gil;Na, Young Woo;Shin, Young Seob
    • 한국측량학회지
    • /
    • 제35권4호
    • /
    • pp.231-240
    • /
    • 2017
  • This paper aims to study a method to estimate precise carbon absorption by quantification of forest information that uses accurate LiDAR data, hyperspectral image. To estimate precise carbon absorption value by using spatial data, a problem was found out of carbon absorption value estimation method with statistical method, which is already existed method, and then offered optimized carbon absorption estimation method with spatial information by analyzing with methods of compare digital aerial photogrammetry and LiDAR data. It turned out possible Precise classification and quantification in case of using LiDAR and hyperspectral image. Various classification of tree species was possible with use of LiDAR and hyperspectral image. Classification of hyperspectral image was matched in general with field survey and Mahalanobis distance classification method. Precise forest resources could be extracted using high density LiDAR data. Compared with existing method, 19.7% in forest area, 19.2% in total carbon absorption, 0.9% in absorption per unit area of difference created, and improvement was found out to be estimated precisely in international code.

빅데이터 분류 기법에 따른 벤처 기업의 성장 단계별 차이 분석 (The Difference Analysis between Maturity Stages of Venture Firms by Classification Techniques of Big Data)

  • 정병호
    • 디지털산업정보학회논문지
    • /
    • 제15권4호
    • /
    • pp.197-212
    • /
    • 2019
  • The purpose of this study is to identify the maturity stages of venture firms through classification analysis, which is widely used as a big data technique. Venture companies should develop a competitive advantage in the market. And the maturity stage of a company can be classified into five stages. I will analyze a difference in the growth stage of venture firms between the survey response and the statistical classification methods. The firm growth level distinguished five stages and was divided into the period of start-up and declines. A classification method of big data uses popularly k-mean cluster analysis, hierarchical cluster analysis, artificial neural network, and decision tree analysis. I used variables that asset increase, capital increase, sales increase, operating profit increase, R&D investment increase, operation period and retirement number. The research results, each big data analysis technique showed a large difference of samples sized in the group. In particular, the decision tree and neural networks' methods were classified as three groups rather than five groups. The groups size of all classification analysis was all different by the big data analysis methods. Furthermore, according to the variables' selection and the sample size may be dissimilar results. Also, each classed group showed a number of competitive differences. The research implication is that an analysts need to interpret statistics through management theory in order to interpret classification of big data results correctly. In addition, the choice of classification analysis should be determined by considering not only management theory but also practical experience. Finally, the growth of venture firms needs to be examined by time-series analysis and closely monitored by individual firms. And, future research will need to include significant variables of the company's maturity stages.

맥파를 이용한 사상체질의 진단에 있어서 분류방법에 따른 진단의 정확도 비교 (Comparisons of the Accuracy of Classification Methods in Sasang Constitution Diagnosis with Pulse Waves)

  • 신상훈;김종열
    • 한국콘텐츠학회논문지
    • /
    • 제9권10호
    • /
    • pp.249-257
    • /
    • 2009
  • 사상의학은 체질에 따라 치료하는 방법을 달리하므로, 체질진단의 객관화가 절실히 요구되고 있다. 본 연구는 맥파를 이용하여 사상체질을 객관적으로 진단함에 있어서, 정확도가 높으면서 실용적인 체질분류 방법을 탐색하는 것이 목적이다. 한방병원에 건강검진을 목적으로 내원한 2848명의 피험자를 대상으로 전문의가 진단한 체질, 체질량지수, 혈압, 맥파 자료를 입수하였다. 자료의 선별과정을 통하여 최종적으로 1635명의 자료를 분석에 사용하였다. 판별분석, 회귀분석, 의사결정나무, 신경망으로 체질을 예측하고 전문의가 진단한 결과와 비교하여 분류방법의 정확도를 비교하였다. 판별분석은 체질별로 공분산 행렬이 동일해야 한다는 가정을 만족시키기 어려웠으며, 체질량지수를 고려하지 않은 의사결정나무와 신경망 분석의 결과는 분석표본의 변동에 민감했다. 체질분류에 결정적인 영향을 미치는 변수인 체질량지수가 고려된 로지스틱 회귀분석 또는 의사결정나무 방법이 체질분류 방법으로 추천할 만하다.

로지스틱 회귀모형과 의사결정나무 모형을 이용한 Cochlodinium polykrikoides 적조 탐지 기법 연구 (Study on Detection Technique for Cochlodinium polykrikoides Red tide using Logistic Regression Model and Decision Tree Model)

  • 박수호;김흥민;김범규;황도현;엥흐자리갈 운자야;윤홍주
    • 한국전자통신학회논문지
    • /
    • 제13권4호
    • /
    • pp.777-786
    • /
    • 2018
  • 본 연구에서는 기계학습 기법의 한 갈래인 로지스틱 회귀모형과 의사결정나무 모형을 이용하여 인공위성 영상에서 Cochlodinium polykrikoides 적조 픽셀을 탐지하는 방법을 제안한다. 학습자료로 적조, 청수, 탁수해역에서 추출된 수출광량 분광 프로파일(918개)을 활용하였다. 전체 데이터셋의 70%를 추출하여 모형 학습에 활용하였으며, 나머지 30%를 이용하여 모형의 분류 정확도를 평가하였다. 정확도 평가 결과 로지스틱 회귀모형은 약 97%의 분류 정확도를 보였으며, 의사결정나무 모형은 약 86%의 분류 정확도를 보였다.

링크구조분석을 이용한 스팸메일 분류 (A Spam Mail Classification Using Link Structure Analysis)

  • 이신영;길아라;김명원
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권1호
    • /
    • pp.30-39
    • /
    • 2007
  • 기존의 내용기반 스팸메일 분류는 전자메일이 이미지를 많이 가지고 있고 텍스트는 적게 가지고 있을 경우에는 내용을 분석하기 어려우므로 스팸메일을 분류하는 데 한계가 있다. 이와 같은 문제를 해결하기 위하여 본 논문에서는 전자메일의 구조를 분석하는 링크구조분석 스팸메일 분류 알고리즘을 제안한다. 이것은 전자메일 안의 하이퍼링크의 개수와 하이퍼링크가 가리키는 웹 문서들이 다른 웹 문서에 의해 링크된 수를 측정하여 전자메일의 중요도를 계산한 후 의사결정트리를 학습하여 스팸메일과 정상메일을 분류한다. 또한 위의 링크구조분석 알고리즘과 하이퍼링크의 서버 주소만을 이용한 변형된 링크구조 분석 알고리즘, 그리고 SVM(support vector machine)을 이용한 내용기반 방법을 다수결 원칙으로 결합한 통합 스팸메일 분류 시스템을 제안한다. 실험 결과, 제안한 링크구조분석 알고리즘은 기존의 내용기반 방법 보다 스팸메일 분류 정확도가 94.8%로 약간 향상되었으며 또한 통합 스팸메일 분류 시스템도 내용기반 방법과 비교하여 향상된 97.7%를 나타냈다.

신경망 분류기와 선형트리 분류기에 의한 영상인식의 비교연구 (A Comparative Study of Image Recognition by Neural Network Classifier and Linear Tree Classifier)

  • Young Tae Park
    • 전자공학회논문지B
    • /
    • 제31B권5호
    • /
    • pp.141-148
    • /
    • 1994
  • Both the neural network classifier utilizing multi-layer perceptron and the linear tree classifier composed of hierarchically structured linear discriminating functions can form arbitrarily complex decision boundaries in the feature space and have very similar decision making processes. In this paper, a new method for automatically choosing the number of neurons in the hidden layers and for initalzing the connection weights between the layres and its supporting theory are presented by mapping the sequential structure of the linear tree classifier to the parallel structure of the neural networks having one or two hidden layers. Experimental results on the real data obtained from the military ship images show that this method is effective, and that three exists no siginificant difference in the classification acuracy of both classifiers.

  • PDF