• Title/Summary/Keyword: Classification Performance

Search Result 3,802, Processing Time 0.035 seconds

Development of Demand Prediction Model for Video Contents Using Digital Big Data (디지털 빅데이터를 이용한 영상컨텐츠 수요예측모형 개발)

  • Song, Min-Gu
    • Journal of Industrial Convergence
    • /
    • v.20 no.4
    • /
    • pp.31-37
    • /
    • 2022
  • Research on what factors affect the success of the movie market is very important for reducing risks in related industries and developing the movie industry. In this study, in order to find out the degree of correlation of independent variables that affect movie performance, a survey was conducted on film experts using the AHP method and the importance of each measurement factor was evaluated. In addition, we hypothesized that factors derived from big data related to search portals and SNS will affect the success of movies due to the increase in the spread and use of smart phones. And a prediction model that reflects both the expert survey information and big data mentioned above was proposed. In order to check the accuracy of the prediction of the proposed model, it was confirmed that it was improved (10.5%) compared to the existing model as a result of verification with real data.Therefore, it is judged that the proposed model will be helpful in decision-making of film production companies and distributors.

Development of Machine Learning Models Classifying Nitrogen Deficiency Based on Leaf Chemical Properties in Shiranuhi (Citrus unshiu × C. sinensis) (부지화 잎의 화학성분에 기반한 질소결핍 여부 구분 머신러닝 모델 개발)

  • Park, Won Pyo;Heo, Seong
    • Korean Journal of Plant Resources
    • /
    • v.35 no.2
    • /
    • pp.192-200
    • /
    • 2022
  • Nitrogen is the most essential macronutrient for the growth of fruit trees and is important factor determining the fruit yield. In order to produce high-quality fruits, it is necessary to supply the appropriate nitrogen fertilizer at the right time. For this, it is a prerequisite to accurately diagnose the nitrogen status of fruit trees. The fastest and most accurate way to determine the nitrogen deficiency of fruit trees is to measure the nitrogen concentration in leaves. However, it is not easy for citrus growers to measure nitrogen concentration through leaf analysis. In this study, several machine learning models were developed to classify the nitrogen deficiency based on the concentration measurement of mineral nutrients in the leaves of tangor Shiranuhi (Citrus unshiu × C. sinensis). The data analyzed from the leaves were increased to about 1,000 training dataset through the bootstrapping method and used to train the models. As a result of testing each model, gradient boosting model showed the best classification performance with an accuracy of 0.971.

Performance of Exercise Posture Correction System Based on Deep Learning (딥러닝 기반 운동 자세 교정 시스템의 성능)

  • Hwang, Byungsun;Kim, Jeongho;Lee, Ye-Ram;Kyeong, Chanuk;Seon, Joonho;Sun, Young-Ghyu;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.177-183
    • /
    • 2022
  • Recently, interesting of home training is getting bigger due to COVID-19. Accordingly, research on applying HAR(human activity recognition) technology to home training has been conducted. However, existing paper of HAR proposed static activity instead of dynamic activity. In this paper, the deep learning model where dynamic exercise posture can be analyzed and the accuracy of the user's exercise posture can be shown is proposed. Fitness images of AI-hub are analyzed by blaze pose. The experiment is compared with three types of deep learning model: RNN(recurrent neural network), LSTM(long short-term memory), CNN(convolution neural network). In simulation results, it was shown that the f1-score of RNN, LSTM and CNN is 0.49, 0.87 and 0.98, respectively. It was confirmed that CNN is more suitable for human activity recognition than other models from simulation results. More exercise postures can be analyzed using a variety learning data.

Fraud detection support vector machines with a functional predictor: application to defective wafer detection problem (불량 웨이퍼 탐지를 위한 함수형 부정 탐지 지지 벡터기계)

  • Park, Minhyoung;Shin, Seung Jun
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.5
    • /
    • pp.593-601
    • /
    • 2022
  • We call "fruad" the cases that are not frequently occurring but cause significant losses. Fraud detection is commonly encountered in various applications, including wafer production in the semiconductor industry. It is not trivial to directly extend the standard binary classification methods to the fraud detection context because the misclassification cost is much higher than the normal class. In this article, we propose the functional fraud detection support vector machine (F2DSVM) that extends the fraud detection support vector machine (FDSVM) to handle functional covariates. The proposed method seeks a classifier for a function predictor that achieves optimal performance while achieving the desired sensitivity level. F2DSVM, like the conventional SVM, has piece-wise linear solution paths, allowing us to develop an efficient algorithm to recover entire solution paths, resulting in significantly improved computational efficiency. Finally, we apply the proposed F2DSVM to the defective wafer detection problem and assess its potential applicability.

Field Applicability Study of Hull Crack Detection Based on Artificial Intelligence (인공지능 기반 선체 균열 탐지 현장 적용성 연구)

  • Song, Sang-ho;Lee, Gap-heon;Han, Ki-min;Jang, Hwa-sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.4
    • /
    • pp.192-199
    • /
    • 2022
  • With the advent of autonomous ships, it is emerging as one of the very important issues not only to operate with a minimum crew or unmanned ships, but also to secure the safety of ships to prevent marine accidents. On-site inspection of the hull is mainly performed by the inspector's visual inspection, and video information is recorded using a small camera if necessary. However, due to the shortage of inspection personnel, time and space constraints, and the pandemic situation, the necessity of introducing an automated inspection system using artificial intelligence and remote inspection is becoming more important. Furthermore, research on hardware and software that enables the automated inspection system to operate normally even under the harsh environmental conditions of a ship is absolutely necessary. For automated inspection systems, it is important to review artificial intelligence technologies and equipment that can perform a variety of hull failure detection and classification. To address this, it is important to classify the hull failure. Based on various guidelines and expert opinions, we divided them into 6 types(Crack, Corrosion, Pitting, Deformation, Indent, Others). It was decided to apply object detection technology to cracks of hull failure. After that, YOLOv5 was decided as an artificial intelligence model suitable for survey and a common hull crack dataset was trained. Based on the performance results, it aims to present the possibility of applying artificial intelligence in the field by determining and testing the equipment required for survey.

Skin Disease Classification Technique Based on Convolutional Neural Network Using Deep Metric Learning (Deep Metric Learning을 활용한 합성곱 신경망 기반의 피부질환 분류 기술)

  • Kim, Kang Min;Kim, Pan-Koo;Chun, Chanjun
    • Smart Media Journal
    • /
    • v.10 no.4
    • /
    • pp.45-54
    • /
    • 2021
  • The skin is the body's first line of defense against external infection. When a skin disease strikes, the skin's protective role is compromised, necessitating quick diagnosis and treatment. Recently, as artificial intelligence has advanced, research for technical applications has been done in a variety of sectors, including dermatology, to reduce the rate of misdiagnosis and obtain quick treatment using artificial intelligence. Although previous studies have diagnosed skin diseases with low incidence, this paper proposes a method to classify common illnesses such as warts and corns using a convolutional neural network. The data set used consists of 3 classes and 2,515 images, but there is a problem of lack of training data and class imbalance. We analyzed the performance using a deep metric loss function and a cross-entropy loss function to train the model. When comparing that in terms of accuracy, recall, F1 score, and accuracy, the former performed better.

Development of a Python-based Algorithm for Image Analysis of Outer-ring Galaxies (외부고리 은하 영상 분석을 위한 파이썬 기반 알고리즘 개발)

  • Jo, Hoon;Sohn, Jungjoo
    • Journal of the Korean earth science society
    • /
    • v.43 no.5
    • /
    • pp.579-590
    • /
    • 2022
  • In this study, we aimed to develop a Python-based outer-ring galaxy analysis algorithm according to the data science process. We assumed that the potential users are citizen scientists, including students and teachers. In the actual classification studies using real data of galaxies, a specialized software called IRAF is used, thereby limiting the general public's access to the software. Therefore, an image analysis algorithm was developed for the outer-ring galaxies as targets, which were compared with those of the previous research. The results of this study were compared with those of studies conducted using IRAF to verify the performance of the newly developed image analysis algorithm. Among the 69 outer-ring galaxies in the first test, 50 cases (72.5%) showed high agreement with the previous research. The remaining 19 cases (27.5%) showed differences that were caused by the presence of bright stars overlapped in the line of sight or weak brightness in the inner galaxy. To increase the usability of the finished product that has undergone a supplementary process, all used data, algorithms, Python code files, and user manuals were loaded in GitHub and made available as shared educational materials.

Review on Effective Skills to Inhibit Dendrite Growth for Stable Lithium Metal Electrode (리튬금속전극의 덴드라이트 성장 억제 방안의 연구 동향)

  • Kim, Yerang;Park, Jihye;Hwang, Yujin;Jung, Cheolsoo
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.2
    • /
    • pp.51-68
    • /
    • 2022
  • Although lithium metal batteries have a high energy density, experimental skills capable of solving lots of problems induced by dendrite such as short circuit, low coulomb efficiency, capacity loss, and cycle performance are still only in academic research stage. In this paper, research cases for dendrite growth inhibition on lithium metal electrode were classified into four types: flexible SEI (solid electrolyte interface) layer responding to volume expansion of lithium metal electrode, SEI supporting layer to inhibit dendrite growth physically, SHES (self-healing electrostatic shield) mechanism to adjust lithium growth by leading uniform diffusion of Li+ ions, and finally micro-patterning to induce uniform deposition of lithium. We hope to advance the practical use of lithium metal electrode by analyzing pros and cons of this classification.

Object-based Compression of Thermal Infrared Images for Machine Vision (머신 비전을 위한 열 적외선 영상의 객체 기반 압축 기법)

  • Lee, Yegi;Kim, Shin;Lim, Hanshin;Choo, Hyon-Gon;Cheong, Won-Sik;Seo, Jeongil;Yoon, Kyoungro
    • Journal of Broadcast Engineering
    • /
    • v.26 no.6
    • /
    • pp.738-747
    • /
    • 2021
  • Today, with the improvement of deep learning technology, computer vision areas such as image classification, object detection, object segmentation, and object tracking have shown remarkable improvements. Various applications such as intelligent surveillance, robots, Internet of Things, and autonomous vehicles in combination with deep learning technology are being applied to actual industries. Accordingly, the requirement of an efficient compression method for video data is necessary for machine consumption as well as for human consumption. In this paper, we propose an object-based compression of thermal infrared images for machine vision. The input image is divided into object and background parts based on the object detection results to achieve efficient image compression and high neural network performance. The separated images are encoded in different compression ratios. The experimental result shows that the proposed method has superior compression efficiency with a maximum BD-rate value of -19.83% to the whole image compression done with VVC.

An Inference System Using BIG5 Personality Traits for Filtering Preferred Resource

  • Jong-Hyun, Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.1
    • /
    • pp.9-16
    • /
    • 2023
  • In the IoT environment, various objects mutually interactive, and various services can be composed based on this environment. In the previous study, we have developed a resource collaboration system to provide services by substituting limited resources in the user's personal device using resource collaboration. However, in the preceding system, when the number of resources and situations increases, the inference time increases exponentially. To solve this problem, this study proposes a method of classifying users and resources by applying the BIG5 user type classification model. In this paper, we propose a method to reduce the inference time by filtering the user's preferred resources through BIG5 type-based preprocessing and using the filtered resources as an input to the recommendation system. We implement the proposed method as a prototype system and show the validation of our approach through performance and user satisfaction evaluation.