• Title/Summary/Keyword: Classification Performance

Search Result 3,802, Processing Time 0.034 seconds

Real-time Laying Hens Sound Analysis System using MFCC Feature Vectors

  • Jeon, Heung Seok;Na, Deayoung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.3
    • /
    • pp.127-135
    • /
    • 2021
  • Raising large numbers of animals in very narrow environments such as laying hens house can be very damaged from small environmental change. Previously researched about laying hens sound analysis system has a problem for applying to the laying hens house because considering only the limited situation of laying hens house. In this paper, to solve the problem, we propose a new laying hens sound analysis model using MFCC feature vector. This model can detect 7 situations that occur in actual laying hens house through 9 kinds of laying hens sound analysis. As a result of the performance evaluation of the proposed laying hens sound analysis model, the average AUC was 0.93, which is about 43% higher than that of the frequency feature analysis method.

Applicable Focal Points of HFACS to Investigate Domestic Civil Unmanned Aerial Vehicle Accidents (국내 민간 무인항공기 사고조사 HFACS 적용중점)

  • Lee, Keon-Hee;Kim, Hyeon-Deok
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.3
    • /
    • pp.256-266
    • /
    • 2021
  • Domestic and foreign studies point to human factors as the main cause of unmanned aerial vehicle accidents, and HFACS is introduced as a technique to effectively analyze these human factors. Until now, domestic and foreign cases of analyzing the human factors of unmanned aerial vehicle accidents using HFACS were mainly targeted by military unmanned aerial vehicles, which can be used as an objective cause identification and similar accident prevention tool. In particular, identifying the focus of HFACS application considering the performance and operation conditions of domestic civilian unmanned aerial vehicles is expected to greatly help identify the cause and prevent recurrence in the event of an accident. Based on HFACS version 7.0, this study analyzed the accident investigation report data conducted by Korea Aviation and Railway Accident Investigation Board to identify the focus of HFACS application that can be used for domestic civilian unmanned aircraft accident investigations.

Metabolic profiling and method validation of marker compounds from Saposhnikoviae Radix and Peucedani Japonici Radix (방풍, 식방풍의 대사체 프로파일링을 통한 지표성분 선정 및 분석법검증)

  • Choi, Bo-Ram;Yoon, Dahye;Kim, Geum-Soog;Han, Kyung-Sook;Choi, Doo Jin;Lee, Young-Seob;Hyun, Do Yoon;Lee, Dae Young
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.4
    • /
    • pp.393-399
    • /
    • 2020
  • Saposhnikoviae Radix (SR) and Peucedani Japonici Radix (PR) have been used as the main traditional herbal medicines in Korea, China and Japan. In this study, ultra-performance liquid chromatography coupled to quadrupole time of flight mass spectrometry (UPLC-QTOF/MS)-based metabolomics was applied to evaluate the quality of SR and PR using the marker compounds. In the S-plot of SR and PR, 5-O-methylvisammioside and peucedanol were selected as a marker compound for SR and PR, respectively. Also, an UPLC method was established and well validated for marker compounds of SR and PR. These results suggested that the established analysis method could be used one of the good methods for the classification and quality assessment of SR and PR.

Data Analysis of Dropouts of University Students Using Topic Modeling (토픽모델링을 활용한 대학생의 중도탈락 데이터 분석)

  • Jeong, Do-Heon;Park, Ju-Yeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.1
    • /
    • pp.88-95
    • /
    • 2021
  • This study aims to provide implications for establishing support policies for students by empirically analyzing data on university students dropouts. To this end, data of students enrolled in D University after 2017 were sampled and collected. The collected data was analyzed using topic modeling(LDA: Latent Dirichlet Allocation) technique, which is a probabilistic model based on text mining. As a result of the study, it was found that topics that were characteristic of dropout students were found, and the classification performance between groups through topics was also excellent. Based on these results, a specific educational support system was proposed to prevent dropout of university students. This study is meaningful in that it shows the use of text mining techniques in the education field and suggests an education policy based on data analysis.

Measurements of Green Space Ratio in Google Earth using Convolutional Neural Network (합성곱 신경망을 이용한 구글 어스에서의 녹지 비율 측정)

  • Youn, Yeo-Su;Kim, Kwang-Baek;Park, Hyun-Jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.3
    • /
    • pp.349-354
    • /
    • 2020
  • The preliminary investigation to expand the green space requires a lot of cost and time. In this paper, we solve the problem by measuring the ratio of green space in a specific region through a convolutional neural network based the green space classification using Google Earth images. First, the proposed method collects various region images in Google Earth and learns them by using the convolutional neural network. The proposed method divides the image recursively to measure the green space ratio of the specific region, and it determines whether the divided image is green space using a trained convolutional neural network model, and then the green space ratio is calculated using the regions determined as the green space. Experimental results show that the proposed method shows high performance in measuring green space ratios in various regions.

Detection The Behavior of Smartphone Users using Time-division Feature Fusion Convolutional Neural Network (시분할 특징 융합 합성곱 신경망을 이용한 스마트폰 사용자의 행동 검출)

  • Shin, Hyun-Jun;Kwak, Nae-Jung;Song, Teuk-Seob
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.9
    • /
    • pp.1224-1230
    • /
    • 2020
  • Since the spread of smart phones, interest in wearable devices has increased and diversified, and is closely related to the lives of users, and has been used as a method for providing personalized services. In this paper, we propose a method to detect the user's behavior by applying information from a 3-axis acceleration sensor and a 3-axis gyro sensor embedded in a smartphone to a convolutional neural network. Human behavior differs according to the size and range of motion, starting and ending time, including the duration of the signal data constituting the motion. Therefore, there is a performance problem for accuracy when applied to a convolutional neural network as it is. Therefore, we proposed a Time-Division Feature Fusion Convolutional Neural Network (TDFFCNN) that learns the characteristics of the sensor data segmented over time. The proposed method outperformed other classifiers such as SVM, IBk, convolutional neural network, and long-term memory circulatory neural network.

Performance Comparison of Machine Learning Models to Detect Screen Use and Devices (스크린 사용 여부 및 사용 디바이스 감지를 위한 머신러닝 모델 성능 비교)

  • Hwang, Sangwon;Kim, Dongwoo;Lee, Juhwan;Kang, Seungwoo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.5
    • /
    • pp.584-590
    • /
    • 2020
  • Long-term use of digital screens in daily life can lead to computer vision syndrome including symptoms such as eye strain, dry eyes, and headaches. To prevent computer vision syndrome, it is important to limit screen usage time and take frequent breaks. There are a variety of applications that can help users know the screen usage time. However, these apps are limited because users see various screens such as desktops, laptops, and tablets as well as smartphone screens. In this paper, we propose and evaluate machine learning-based models that detect the screen device in use using color, IMU and lidar sensor data. Our evaluation shows that neural network-based models show relatively high F1 scores compared to traditional machine learning models. Among neural network-based models, the MLP and CNN-based models have higher scores than the LSTM-based model. The RF model shows the best result among the traditional machine learning models, followed by the SVM model.

Anomaly Detection In Real Power Plant Vibration Data by MSCRED Base Model Improved By Subset Sampling Validation (Subset 샘플링 검증 기법을 활용한 MSCRED 모델 기반 발전소 진동 데이터의 이상 진단)

  • Hong, Su-Woong;Kwon, Jang-Woo
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.1
    • /
    • pp.31-38
    • /
    • 2022
  • This paper applies an expert independent unsupervised neural network learning-based multivariate time series data analysis model, MSCRED(Multi-Scale Convolutional Recurrent Encoder-Decoder), and to overcome the limitation, because the MCRED is based on Auto-encoder model, that train data must not to be contaminated, by using learning data sampling technique, called Subset Sampling Validation. By using the vibration data of power plant equipment that has been labeled, the classification performance of MSCRED is evaluated with the Anomaly Score in many cases, 1) the abnormal data is mixed with the training data 2) when the abnormal data is removed from the training data in case 1. Through this, this paper presents an expert-independent anomaly diagnosis framework that is strong against error data, and presents a concise and accurate solution in various fields of multivariate time series data.

Indoor positioning method using WiFi signal based on XGboost (XGboost 기반의 WiFi 신호를 이용한 실내 측위 기법)

  • Hwang, Chi-Gon;Yoon, Chang-Pyo;Kim, Dae-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.70-75
    • /
    • 2022
  • Accurately measuring location is necessary to provide a variety of services. The data for indoor positioning measures the RSSI values from the WiFi device through an application of a smartphone. The measured data becomes the raw data of machine learning. The feature data is the measured RSSI value, and the label is the name of the space for the measured position. For this purpose, the machine learning technique is to study a technique that predicts the exact location only with the WiFi signal by applying an efficient technique to classification. Ensemble is a technique for obtaining more accurate predictions through various models than one model, including backing and boosting. Among them, Boosting is a technique for adjusting the weight of a model through a modeling result based on sampled data, and there are various algorithms. This study uses Xgboost among the above techniques and evaluates performance with other ensemble techniques.

Linear interpolation and Machine Learning Methods for Gas Leakage Prediction Base on Multi-source Data Integration (다중소스 데이터 융합 기반의 가스 누출 예측을 위한 선형 보간 및 머신러닝 기법)

  • Dashdondov, Khongorzul;Jo, Kyuri;Kim, Mi-Hye
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.3
    • /
    • pp.33-41
    • /
    • 2022
  • In this article, we proposed to predict natural gas (NG) leakage levels through feature selection based on a factor analysis (FA) of the integrating the Korean Meteorological Agency data and natural gas leakage data for considering complex factors. The paper has been divided into three modules. First, we filled missing data based on the linear interpolation method on the integrated data set, and selected essential features using FA with OrdinalEncoder (OE)-based normalization. The dataset is labeled by K-means clustering. The final module uses four algorithms, K-nearest neighbors (KNN), decision tree (DT), random forest (RF), Naive Bayes (NB), to predict gas leakage levels. The proposed method is evaluated by the accuracy, area under the ROC curve (AUC), and mean standard error (MSE). The test results indicate that the OrdinalEncoder-Factor analysis (OE-F)-based classification method has improved successfully. Moreover, OE-F-based KNN (OE-F-KNN) showed the best performance by giving 95.20% accuracy, an AUC of 96.13%, and an MSE of 0.031.