Objective: Machine learning is not yet widely used in the medical field. Therefore, this study was conducted to compare the performance of preexisting severity prediction models and machine learning based models (random forest [RF], gradient boosting [GB]) for mortality prediction in pneumonia patients. Methods: We retrospectively collected data from patients who visited the emergency department of a tertiary training hospital in Seoul, Korea from January to March of 2015. The Pneumonia Severity Index (PSI) and Sequential Organ Failure Assessment (SOFA) scores were calculated for both groups and the area under the curve (AUC) for mortality prediction was computed. For the RF and GB models, data were divided into a test set and a validation set by the random split method. The training set was learned in RF and GB models and the AUC was obtained from the validation set. The mean AUC was compared with the other two AUCs. Results: Of the 536 investigated patients, 395 were enrolled and 41 of them died. The AUC values of PSI and SOFA scores were 0.799 (0.737-0.862) and 0.865 (0.811-0.918), respectively. The mean AUC values obtained by the RF and GB models were 0.928 (0.899-0.957) and 0.919 (0.886-0.952), respectively. There were significant differences between preexisting severity prediction models and machine learning based models (P<0.001). Conclusion: Classification through machine learning may help predict the mortality of pneumonia patients visiting the emergency department.
본 논문에서는 음성 명령을 인식하여 비행기의 1차 조종면을 제어할 수 있는 장치를 제안한다. 음성 명령어는 19개의 명령어로 구성되며 총 2,500개의 데이터셋을 근간으로 학습 모델을 구성한다. 학습 모델은 TensorFlow 기반의 Keras 모델의 Sequential 라이브러리를 이용하여 CNN 모델로 구성되며, 학습에 사용되는 음성 파일은 MFCC 알고리즘을 이용하여 특징을 추출한다. 특징을 인식하기 위한 2단계의 Convolution layer 와 분류를 위한 Fully Connected layer는 2개의 dense 층으로 구성하였다. 검증 데이터셋의 정확도는 98.4%이며 테스트 데이터셋의 성능평가에서는 97.6%의 정확도를 보였다. 또한, 라즈베리 파이 기반의 제어장치를 설계 및 구현하여 동작이 정상적으로 이루어짐을 확인하였다. 향후, 음성인식 자동 비행 및 항공정비 분야의 가상 훈련환경으로 활용될 수 있을 것이다.
International Journal of Computer Science & Network Security
/
제21권9호
/
pp.19-30
/
2021
Diabetes Mellitus (DM) is one of common chronic diseases leading to severe health complications that may cause death. The disease influences individuals, community, and the government due to the continuous monitoring, lifelong commitment, and the cost of treatment. The World Health Organization (WHO) considers Saudi Arabia as one of the top 10 countries in diabetes prevalence across the world. Since most of the medical services are provided by the government, the cost of the treatment in terms of hospitals and clinical visits and lab tests represents a real burden due to the large scale of the disease. The ability to predict the diabetic status of a patient without the laboratory tests by performing screening based on some personal features can lessen the health and economic burden caused by diabetes alone. The goal of this paper is to investigate the prediction of diabetic and prediabetic patients by considering factors other than the laboratory tests, as required by physicians in general. With the data obtained from local hospitals, medical records were processed to obtain a dataset that classified patients into three classes: diabetic, prediabetic, and non-diabetic. After applying three machine learning algorithms, we established good performance for accuracy, precision, and recall of the models on the dataset. Further analysis was performed on the data to identify important non-laboratory variables related to the patients for diabetes classification. The importance of five variables (gender, physical activity level, hypertension, BMI, and age) from the person's basic health data were investigated to find their contribution to the state of a patient being diabetic, prediabetic or normal. Our analysis presented great agreement with the risk factors of diabetes and prediabetes stated by the American Diabetes Association (ADA) and other health institutions worldwide. We conclude that by performing class-specific analysis of the disease, important factors specific to Saudi population can be identified, whose management can result in controlling the disease. We also provide some recommendations learnt from this research.
코로나로 인해 건강관리에 대한 관심이 증가하고 있는 요즘, 여러 사람이 함께 이용하는 헬스장이나 공용시설을 이용하는데 어려움이 늘어남에 따라 홈 트레이닝을 하는 이들이 늘어나고 있다. 이에 본 연구에서는 홈 트레이닝 사용자들에게 좀 더 정확하고 의미 있는 운동 추천을 제공하기 위해 개인 성향 정보를 활용한 개인화된 운동 추천 알고리즘을 제안한다. 이를 위해 식습관 정보, 육체적 조건 등 개인을 나타낼 수 있는 개인 성향 정보를 사용해 k-최근접 이웃 알고리즘으로 데이터를 비만의 기준에 따라 분류하였다. 또한, 운동 데이터 셋을 운동의 레벨에 따라 등급을 구별하였으며 각 데이터 셋의 이웃 정보를 바탕으로 모델 기반 협업 필터링 방법 중 차원 축소모델인 특이값 분해 알고리즘(SVD)을 통해 사용자들에게 개인화된 운동 추천을 제공한다. 따라서 메모리 기반 협업 필터링 추천 기법의 데이터 희소성과 확장성의 문제를 해결할 수 있고, 실험을 통해 본 연구에서 제안하는 알고리즘의 정확도와 성능을 검증한다.
최근에는 데이터베이스의 발달로 금융, 보안, 네트워크 등에서 생성된 많은 데이터가 저장 가능하며, 기계학습 기반 분류기를 통해 분석이 이루어지고 있다. 이 때 주로 야기되는 문제는 데이터 불균형으로, 학습 시 다수 범주의 데이터들로 과적합이 되어 분류 정확도가 떨어지는 경우가 발생한다. 이를 해결하기 위해 소수 범주의 데이터 수를 증가시키는 오버샘플링 전략이 주로 사용되며, 데이터 분포에 적합한 기법과 인자들을 다양하게 조절하는 과정이 필요하다. 이러한 과정의 개선을 위해 본 연구에서는 스모트와 생성적 적대 신경망 등 다양한 기법 기반의 오버샘플링 조합과 비율을 유전알고리즘을 통해 탐색하고 최적화 하는 전략을 제안한다. 제안된 전략과 단일 오버샘플링 기법으로 신용카드 사기 탐지 데이터를 샘플링 한 뒤, 각각의 데이터들로 학습한 분류기의 성능을 비교한다. 그 결과 유전알고리즘으로 기법별 비율을 탐색하여 최적화 한 전략의 성능이 기존 전략들 보다 우수했다.
본 연구는 알츠하이머와 혈관성 치매 환자를 대상으로 구어유창성과 이야기이해 과제 수행능력의 차이 및 작업기억 처리수준과의 상관 그리고 언어능력 관련 요인선별을 위해 시행되었다. 전반적인 인지능력에서 차이를 보이지 않는 각기 15명의 환자를 대상으로 구어유창성 내 음소유창성 및 이야기이해 그리고 작업기억 하위과제인 지연회상과 재인과제에서 두 그룹 간 유의한 수행능력의 차이를 보였다. 상관 및 회귀분석에서는 알츠하이머 그룹이 작업기억 내역행 숫자기억 과제와 이야기이해 과제에서만 유의한 상관을 보인 반면, 혈관성 치매 그룹은 추가적으로 재인 점수에서도 이야기이해 능력과의 유의한 상관이 나타났다. 한편, 회귀분석에서는 혈관성 치매 그룹에서만 언어적 작업기억 능력이 이야기이해 능력의 예측 요인임을 확인하였다. 결론적으로 두 유형의 치매를 구분하는 데 있어 음소유창성 과제 외에 이야기이해 및 작업기억 과제가 유의한 도구임이 확인되었는데, 이를 통해 두 유형의 치매에 대한 분류기준을 제고함은 물론 적절한 치료계획 및 효율적인 중재에 부가적인 기여를 할 것으로 보인다.
무선 신호의 자동 변조 인식은 지능형 수신기의 주요한 작업으로 다양한 민간 및 군대 응용분야가 있다. 본 논문에서는 딥 뉴럴 네트워크 모델을 기반한 무선통신에서 전파신호의 변조 방식을 식별하는 방법을 제안한다. 순차적인 데이터에 대해 장기적인 패턴을 잡아내는데 용이한 LSTM 모델을 통과하여 얻은 연속적인 신호의 특징값을 딥 뉴럴 네트워크의 입력 데이터로 사용하여 신호의 변조 패턴을 분류한다. 변조된 신호의 진폭 및 위상, 동상(In-phase) 반송파, 직각 위상(Quadrature-phase) 반송파의 값을 LSTM 모델의 입력 데이터로 사용하여 분류한다. 제안된 학습 방법의 성능을 검증하기 위해, 다양한 신호 대 잡음비로 10 가지 유형의 변조 신호를 포함하는 대형 데이터 세트를 사용하여 학습하고 테스트한다. 본 논문의 변조 인식 프로그램은 신호의 사전 정보가 없는 환경에서 변조방식을 예측하는데 적용될 수 있다.
포털 사이트의 인터넷 뉴스 댓글, SNS, 커뮤니티 사이트 등의 온라인상에서 명예 훼손 사건이 최근 점점 증가하고 있다. 온라인상의 차별 및 혐오 표현은 명예 훼손 문제뿐만 아니라 사생활 침해, 인신 공격 등 다양한 형태로 온라인 서비스 이용자들을 위협하고 있다. 지난 몇 년간 산업계와 학계는 이러한 문제를 해결하고자 다양한 방법으로 연구해왔다. 하지만 한국어 대상으로 수행된 딥러닝 기반 혐오 표현 탐지 연구는 아직까지 부족한 상황이다. 본 연구의 목적은 혐오 표현뿐만 아니라 다양한 차별적 표현에 대한 탐지를 위해 데이터셋을 구축하고 이를 분류하기 위한 딥러닝 모델링을 실험하는 것이다. 데이터셋 구축은 10명의 인원이 교차적으로 검토를 하면서 7개 항목에 대한 라벨링 기준을 확립했다. 본 연구는 약 137,111개에 해당하는 한국어 인터넷 뉴스 댓글 데이터셋에 대해 7개의 항목을 각각 이진 분류하고, 이를 딥러닝 기법을 통해 분석한다. 본 연구에서 제안하는 기법은 어텐션 기반 다중 채널 CNN 모델링 기법이다. 실험 결과 7개 항목에 대해 가중 평균 f1 점수를 평가했을 때, 70.32%의 성능을 달성했다.
이 연구는 1999년 1분기부터 2008년 4분기까지 SITC 10개 산업분류 자료를 이용하여 우리나라 무역상대국인 인도네시아, 인도, 중국, 일본에 대한 무역수지와 환율간의 장기관계를 분석하였다. 실증분석은 소표본 문제를 완화하고 추정과 검정의 효율성을 제고시키기 위하여 비안정적인 패널자료에 대한 패널분석기법을 적용하였다. 그룹간 패널 DOLS로 산업분류별 무역상대국별 무역수지함수를 추정한 결과 패널전체의 경우 인도와 일본, 중국의 경우 Marshall-Lerner 조건을 지지하였으나 인도네시아의 경우 기각하였다. 개별 산업에 대해서는 인도네시아 2개 산업, 인도 5개 산업, 일본 4개 산업, 중국 6개 산업이 Marshall-Lerner 조건을 지지하였다.
폭발적으로 증가하는 인터넷 환경에서 정보보호는 가장 중요한 고려사항 중의 하나이다. 현재 이에 대한 대응방안으로 IDS, 방화벽, VPN 등 여러 보안 솔루션들이 사용되고 있지만 TCP/IP를 근간으로 하는 인터넷 환경은 기본적으로 프로토콜 자체의 취약성을 가지고 있다. 그 중에서도, TCP/IP 헤더 중 ICMP Payload. Identification(ID), Sequence Number(SEQ), Acknowledge(ACK). Timestamp의 필드 내용을 조작함으로써 특정 정보를 전송할 수 있는 은닉채널이 가능하다고 이미 알려져 있다. 특히 본 논문에서는 TCP/IP 헤더의 여러 필드들 중에서도 IP 헤더의 ID 필드, TCP 헤더의 SEQ 필드를 이용한 은닉채널 탐지에 초점을 맞추었으며, 이러한 은닉채널의 탐지를 위하여, 패턴분류 문제 있어서 우수한 성능을 보이는 것으로 알려져 있는 Support Vector Machine(SVM)을 사용하였다. 본 논문의 실험결과에서는 제안된 탐지방안이 정상 TCP/IP 트래픽으로부터 은닉채널이 포함된 TCP/IP 패킷을 구분할 수 있음을 보여주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.