References
- Musher DM, Thorner AR. Community-acquired pneumonia. N Engl J Med 2014;371:1619-28. https://doi.org/10.1056/NEJMra1312885
- Restrepo MI, Mortensen EM, Rello J, Brody J, Anzueto A. Late admission to the ICU in patients with communityacquired pneumonia is associated with higher mortality. Chest 2010;137:552-7. https://doi.org/10.1378/chest.09-1547
- Niederman MS, McCombs JS, Unger AN, Kumar A, Popovian R. The cost of treating community-acquired pneumonia. Clin Ther 1998;20:820-37. https://doi.org/10.1016/S0149-2918(98)80144-6
- Fine MJ, Auble TE, Yealy DM, et al. A prediction rule to identify low-risk patients with community-acquired pneumonia. N Engl J Med 1997;336:243-50. https://doi.org/10.1056/NEJM199701233360402
- Lim WS, van der Eerden MM, Laing R, et al. Defining community acquired pneumonia severity on presentation to hospital: an international derivation and validation study. Thorax 2003;58:377-82. https://doi.org/10.1136/thorax.58.5.377
- Charles PG, Wolfe R, Whitby M, et al. SMART-COP: a tool for predicting the need for intensive respiratory or vasopressor support in community-acquired pneumonia. Clin Infect Dis 2008;47:375-84. https://doi.org/10.1086/589754
- Obermeyer Z, Emanuel EJ. Predicting the future: big data, machine learning, and clinical medicine. N Engl J Med 2016;375:1216-9. https://doi.org/10.1056/NEJMp1606181
- Yoon JG, Heo J, Kim M, et al. Machine learning-based diagnosis for disseminated intravascular coagulation (DIC): development, external validation, and comparison to scoring systems. PLoS One 2018;13:e0195861. https://doi.org/10.1371/journal.pone.0195861
- Dybowski R, Weller P, Chang R, Gant V. Prediction of outcome in critically ill patients using artificial neural network synthesised by genetic algorithm. Lancet 1996;347:1146-50. https://doi.org/10.1016/S0140-6736(96)90609-1
- Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016;316:2402-10. https://doi.org/10.1001/jama.2016.17216
- Way GP, Sanchez-Vega F, La K, et al. Machine learning detects pan-cancer Ras pathway activation in The Cancer Genome Atlas. Cell Rep 2018;23:172-80.e3. https://doi.org/10.1016/j.celrep.2018.03.046
- Dreiseitl S, Ohno-Machado L. Logistic regression and artificial neural network classification models: a methodology review. J Biomed Inform 2002;35:352-9. https://doi.org/10.1016/S1532-0464(03)00034-0
- Genuer R, Poggi JM, Tuleau-Malot C. Variable selection using random forests. Pattern Recognit Lett 2010;31:2225-36. https://doi.org/10.1016/j.patrec.2010.03.014
- Mandell LA, Wunderink RG, Anzueto A, et al. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of communityacquired pneumonia in adults. Clin Infect Dis 2007;44 Suppl 2:S27-72. https://doi.org/10.1086/511159
- American Thoracic Society. Infectious Diseases Society of Amerrica. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcareassociated pneumonia. Am J Respir Crit Care Med 2005;171:388-416. https://doi.org/10.1164/rccm.200405-644ST
- Breiman L. Random forests. Mach Learn 2001;45:5-32. https://doi.org/10.1023/A:1010933404324
- Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat 2001;29:1189-232.
- Capelastegui A, Espana PP, Quintana JM, et al. Validation of a predictive rule for the management of communityacquired pneumonia. Eur Respir J 2006;27:151-7. https://doi.org/10.1183/09031936.06.00062505
- Aujesky D, Auble TE, Yealy DM, et al. Prospective comparison of three validated prediction rules for prognosis in community-acquired pneumonia. Am J Med 2005;118:384-92. https://doi.org/10.1016/j.amjmed.2005.01.006
- Zhang BT. Next-generation machine learning technologies. Commun Korean Inst Inf Sci Eng 2007;25:96-107.
- Launay CP, Riviere H, Kabeshova A, Beauchet O. Predicting prolonged length of hospital stay in older emergency department users: use of a novel analysis method, the Artificial Neural Network. Eur J Intern Med 2015;26:478-82. https://doi.org/10.1016/j.ejim.2015.06.002
- Weng SF, Reps J, Kai J, Garibaldi JM, Qureshi N. Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLoS One 2017;12:e0174944. https://doi.org/10.1371/journal.pone.0174944
- Olden JD, Jackson DA. Illuminating the "black box": a randomization approach for understanding variable contributions in artificial neural networks. Ecol Modell 2002;154:135-50. https://doi.org/10.1016/S0304-3800(02)00064-9
- Welling SH, Refsgaard HH, Brockhoff PB, Clemmensen LH. Forest floor visualizations of random forests. arXiv 2016:1605.09196.