• 제목/요약/키워드: Classification Performance

검색결과 3,802건 처리시간 0.036초

데일리 렌즈 데이터를 사용한 데이터마이닝 기법 비교 (Comparison of data mining methods with daily lens data)

  • 석경하;이태우
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권6호
    • /
    • pp.1341-1348
    • /
    • 2013
  • 데이터베이스 마케팅과 시장예측 등의 분야에서 분류문제를 해결하기 위해 다양한 데이터마이닝 기법들이 적용되고 있다. 본 연구에서는 데일리 렌즈 고객들의 거래 데이터를 기반으로 의사결정나무, 로지스틱 회귀모형과 같은 기존의 통계적 분류기법과 최근에 개발된 배깅, 부스팅, 라소, 랜덤 포리스트 그리고 지지벡터기계의 분류 성능을 비교하고자 한다. 비교 실험을 위해 데이터 정제, 탐색, 파생변수 생성, 그리고 변수 선택과정을 거쳤다. 실험결과 정분류율 측면에서는 지지벡터기계가 다른 모형보다 근소하게 높았지만 표준편차가 크게 나왔다. 정분류율과 표준편차의 관점에서는 랜덤 포리스트가 가장 좋은 결과를 보였다. 그러나 모형의 해석, 간명성 그리고 학습에 걸리는 시간을 고려하였을 때 라소모형이 적합하다는 결론을 내렸다.

초점불완전 열화추정 및 영상복원기법을 사용한 자동초점시스템 (A Digital Auto-Focusing Algorithm Using Point spread function Estimation Image Restoration)

  • 김상구;박상래;백준기
    • 전자공학회논문지S
    • /
    • 제36S권2호
    • /
    • pp.57-62
    • /
    • 1999
  • 점확산 함수(point spread function: PSF)의 정확한 주정은 복원결과가 원 영상에 얼마나 근접할 수 있는가를 결정한다는 점에서 영상처리의 중요한 연구 주체중의 하나가 된다. 본 논문에서는 PSF를 추정하기 위한 새로운 알로리즘을 제안하고, 이를 영상복원에 적용한 후 이를 기반으로 완전 디지털 자동초점 시스템을 제안한다. 자동초점시스템을 구현하기 위한 과정은 두 단계로 구성되어 있는데, 즉 에지 분류을 통한 PSF측정과, 이를 이용한 영상복원이다. 보다 구체적으로, 입력 영상을 다수의 소 영상 혹은 블록으로 분할한 뒤, 에지를 포함하고 있는 블록들로부터 단위계단응답을 구하여 평균한 후, 2차원 등방성 PSF를 추정한다. 마지막으로 추정된 PSF를 사용하여 영상복원을 수행함으로써 맞는 영상을 구한다.

  • PDF

합성곱 신경망을 이용한 전기 아크 신호 검출 (Electrical Arc Detection using Convolutional Neural Network)

  • 이상익;강석우;김태원;김만배
    • 방송공학회논문지
    • /
    • 제25권4호
    • /
    • pp.569-575
    • /
    • 2020
  • 전기화재의 원인중의 하나는 직렬 아크이다. 최근까지 아크 신호를 검출하기 위해 다양한 기법들이 진행되고 있다. 시간 신호에 푸리에 변환, 웨이블릿 변환, 또는 통계적 특징 등을 활용하여 아크 검출을 하는 방법들이 소개되었지만, 변환 및 특징 추출은 부가적인 처리 시간이 요구되는 단점이 있다. 반면에 최근의 딥러닝 모델은 종단간 학습으로 특징 추출 과정없이 직접 원시 데이터를 활용한다. 따라서, 1-D 시간 신호를 직접 활용하여 아크를 검출하는 것이 좋은데, 인공신경망의 분류 성능이 저하되는 문제점이 있다. 본 논문에서는 연속 입력 1-D 신호를 2-D로 변환한 후에, 합성곱신경망으로 분류하는 방법을 제안한다. 실험 데이터에 적용한 결과 합성곱신경망의 사용이 인공신경망보다 약 8.6%의 아크 분류 성능을 향상시켰다. 또한 2-D 데이터의 부족을 보완하기 위해서 데이터증강을 이용하여, 14%의 분류 성능을 개선하였다.

MODIS 자료를 이용한 한반도 지면피복 분류 (Classification of Land Cover over the Korean Peninsula using MODIS Data)

  • 강전호;서명석;곽종흠
    • 대기
    • /
    • 제19권2호
    • /
    • pp.169-182
    • /
    • 2009
  • To improve the performance of climate and numerical models, concerns on the land-atmosphere schemes are steadily increased in recent years. For the realistic calculation of land-atmosphere interaction, a land surface information of high quality is strongly required. In this study, a new land cover map over the Korean peninsula was developed using MODIS (MODerate resolution Imaging Spectroradiometer) data. The seven phenological data set (maximum, minimum, amplitude, average, growing period, growing and shedding rate) derived from 15-day normalized difference vegetation index (NDVI) were used as a basic input data. The ISOData (Iterative Self-Organizing Data Analysis), a kind of unsupervised non-hierarchical clustering method, was applied to the seven phenological data set. After the clustering, assignment of land cover type to the each cluster was performed according to the phenological characteristics of each land cover defined by USGS (US. Geological Survey). Most of the Korean peninsula are occupied by deciduous broadleaf forest (46.5%), mixed forest (15.6%), and dryland crop (13%). Whereas, the dominant land cover types are very diverse in South-Korea: evergreen needleleaf forest (29.9%), mixed forest (26.6%), deciduous broadleaf forest (16.2%), irrigated crop (12.6%), and dryland crop (10.7%). The 38 in-situ observation data-base over South-Korea, Environment Geographic Information System and Google-earth are used in the validation of the new land cover map. In general, the new land cover map over the Korean peninsula seems to be better classified compared to the USGS land cover map, especially for the Savanna in the USGS land cover map.

이동형 정보 증강 시스템을 위한 실시간 장소 인식 (Real-Time Place Recognition for Augmented Mobile Information Systems)

  • 오수진;남양희
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제14권5호
    • /
    • pp.477-481
    • /
    • 2008
  • 이동 중 사용자에게 필요한 정보를 제공하기 위해서는 장소를 인지하는 기술이 필요하다. 본 논문에서는 건물 내에서 이동하면서 카메라에 의해 포착된 영상 정보를 분석하여 현재 장소를 파악하고 카메라 영상에 관련 정보를 증강하는 비디오 기반 실시간 장소인식 시스템을 제안한다. 영상의 전역적 특징을 이용한 기존 연구들은 장면의 부분적인 폐색이나 잡음에 민감하고, 물체인식을 행하는 지역적 특징 의존 방식은 계산량이 많아 실시간 적용이 어렵다. 또한, 그러한 특징들로부터 장소인식 결과를 도출하기 위해서는 통계적 그래프 기반 모델이나 베이시안 네트웍등이 이용되어 왔는데, 전자의 경우 장소 이동의 확률을 얻기 위한 많은 통계 데이타가 필요하며, 후자는 장소 이동문맥을 활용하지 못하므로 물체 인식 결과에만 의존하는 단점이 있다. 본 논문에서는 장소 문맥 정보를 활용하면서 영상의 지역적, 전역적 특징추출법의 결합을 통해 부분 폐색 및 잡음에 대한 전역적 방법의 민감성을 보완하고, 지역적 방법의 느린 처리속도를 보완한 시스템을 제안한다. 제안된 방법을 건물 내부를 이동하면서 장소에 대한 정보를 얻는 정보증강 시스템에 적용하여 실시간 성능을 확인하였다.

모델기반 특징추출을 이용한 지역변화 특성에 따른 개체기반 표정인식 (Facial Expression Recognition with Instance-based Learning Based on Regional-Variation Characteristics Using Models-based Feature Extraction)

  • 박미애;고재필
    • 한국멀티미디어학회논문지
    • /
    • 제9권11호
    • /
    • pp.1465-1473
    • /
    • 2006
  • 본 논문에서는 Active Shape Models(ASM)과 상태기반 모델을 사용하여 동영상으로부터 얼굴 표정을 인식하는 방법을 제시한다. ASM을 이용하여 하나의 입력 영상에 대한 얼굴요소특징점들을 정합하고, 그 과정에서 생성되는 모양변수벡터를 추출한다. 동영상에 대해 추출되는 모양변수벡터 집합을 세 가지 상태 중 한 가지를 가지는 상태벡터로 변환하고 분류기를 통해 얼굴의 표정을 인식한다. 분류단계에서는 표정별 표정변화에 따른 변화영역의 차이를 고려한 새로운 유사도 측정치를 제안한다. 공개데이터베이스 KCFD에 대한 실험에서는 제안한 측정치와 기존의 이친 측정치를 사용한 k-NN의 인식률이 k가 1일 때 각각 89.1% 및 86.2%을 보임으로써, 제안한 측정치가 기존의 이진 측정치보다 더 높은 인식률을 나타내는 것을 보인다.

  • PDF

정규화된 형상 모델을 이용한 뼈 나이 측정 방법 (A Bone Age Assessment Method Based on Normalized Shape Model)

  • 유주환;이종민;김회율
    • 한국멀티미디어학회논문지
    • /
    • 제12권3호
    • /
    • pp.383-396
    • /
    • 2009
  • 뼈 나이 측정은 소아의 내분비계 관련 질병 진단을 위해 소아과에서 널리 사용되는 방법이다. 그러나 전문 인력이 부족하여 자동화된 측정 방법에 대한 꾸준한 요구가 있었다. 따라서 본 논문에서는 패턴 인식기법을 이용한 자동화된 뼈 나이 측정 알고리즘을 제안한다. 제안하는 알고리즘은 X-ray 영상에서 손가락뼈의 각 부분을 자동으로 분류하는 과정과 분류된 뼈 영상으로부터 정규화된 형상 모델을 추출하는 과정, 그리고 정규화된 형상 모델로부터 뼈 나이를 측정하는 과정으로 구성된다. 제안하는 알고리즘은 능동 형상 모델(Active Shape Model: ASM)을 이용하여 나이 측정에 사용되는 특정값 추출의 정확도를 향상시켰으며, 뼈 나이 분류를 위해 사용된 Support Vector Machine(SVM)의 입력으로 정규화된 형상 모델로부터 얻어진 각 뼈의 크기와 비율을 특징값으로 사용하였다. 성능 평가를 위해서 한양대학교 부속병원에서 제공한 영상에 대해 전문가가 평가한 나이와 제안한 알고리즘을 이용하여 측정된 나이를 통계적으로 비교 분석하였다. 실험을 통하여 본 논문에서 제안한 특징값과 알고리즘으로 뼈 나이를 진단한 결과, 전문가에 의한 결과와 평균 0.679살의 오차 이내의 뛰어난 뼈 나이 측정 성능을 보였다.

  • PDF

Clinical Outcomes of Gamma Knife Radiosurgery for Metastatic Brain Tumors from Gynecologic Cancer : Prognostic Factors in Local Treatment Failure and Survival

  • Shin, Hong Kyung;Kim, Jeong Hoon;Lee, Do Heui;Cho, Young Hyun;Kwon, Do Hoon;Roh, Sung Woo
    • Journal of Korean Neurosurgical Society
    • /
    • 제59권4호
    • /
    • pp.392-399
    • /
    • 2016
  • Objective : Brain metastases in gynecologic cancer (ovarian, endometrial, and cervical cancer) patients are rare, and the efficacy of Gamma Knife Radiosurgery (GKRS) to treat these had not been evaluated. We assessed the efficacy of GKRS and prognostic factors for tumor control and survival in brain metastasis from gynecologic cancers. Methods : This retrospective study was approved by the institutional review board. From May 1995 to October 2012, 26 women (mean age 51.3 years, range 27-70 years) with metastatic brain tumors from gynecologic cancer were treated with GKRS. We reviewed their outcomes, radiological responses, and clinical status. Results : In total 24 patients (59 lesions) were available for follow-up imaging. The median follow-up time was 9 months. The mean treated tumor volume at the time of GKRS was $8185mm^3$ (range $10-19500mm^3$), and the median dose delivered to the tumor margin was 25 Gy (range, 10-30 Gy). A local tumor control rate was 89.8% (53 of 59 tumors). The median overall survival was 9.5 months after GKRS (range, 1-102 months). Age-associated multivariate analysis indicated that the Karnofsky performance status (KPS), the recursive partitioning analysis (RPA) classification, and the number of treated lesions were significant prognostic factors for overall survival (HR=0.162, p=0.008, HR=0.107, p=0.038, and HR=2.897, p=0.045, respectively). Conclusion : GKRS is safe and effective for the management of brain metastasis from gynecologic cancers. The clinical status of the patient is important in determining the overall survival time.

군용무인기의 감항인증 목표안전수준 분석 (Target Level of Safety Analysis in Airworthiness Certification for Military UAV)

  • 이나래;전병일;장영근
    • 한국항공우주학회지
    • /
    • 제41권10호
    • /
    • pp.840-848
    • /
    • 2013
  • 군용항공기 감항인증은 감항성을 가지고 요구된 성능과 기능을 발휘할 수 있음에 대한 정부의 인증이다. 북대서양조약기구(NATO)는 최대이륙중량 150kg 이상의 군용무인기에 대한 감항인증 요구도인 STANAG-4671을 2009년에 배포하였다. 최근 150kg 미만의 소형무인기에 대한 감항인증 요구도인 STANAG-4703을 내부적으로 배포하여 검토 중에 있다. 우리나라는 국제적으로 통용되는 감항인증 기준인 STANAG-4671을 기타감항인증 기준으로 준용하여 군용무인기에 적용하고 있다. 하지만 STANAG-4671은 중량에 관계없이 동일한 목표안전수준을 요구하여 낮은 중량의 중 소형무인기에 대해서는 목표안전수준이나 설계 요구도가 과도하게 적용될 수 있다. 따라서 본 연구에서는 군용무인기 분류와 감항인증 기준을 분석하고, 지상피해 평가기법을 적용하여 최대이륙중량별 목표안전수준을 제시하였다.

후보벡터 분류에 의한 영상 에러 복원 (Error Recovery by the Classification of Candidate Motion Vectors for H.263 Video Communications)

  • 손남례;이귀상
    • 정보처리학회논문지B
    • /
    • 제10B권2호
    • /
    • pp.163-168
    • /
    • 2003
  • 이동 통신 채널과 같은 저대역 통신망에서는 비디오 전송을 위해서는 높은 압축율을 갖는 부호화 방법들이 사용된다. 본 논문에서는 저대역 폭 통신을 위한 비디오 부호화 표준인 H.263 부호화를 기반으로 전송도중 손상된 움직임 벡터의 복원기법을 제안하고 실험하였다. 공간적으로 인접한 블록간에는 움직임 벡터의 상관성이 높기 때문에 손실블록 또한 이 블록들과 움직임이 비슷할 가능성이 높다. 이러한 특성을 이용하여 손실블록의 주변블록 중에서 같은 방향으로 움직임을 갖는 블록들로 구성된 동일 움직임 영역을 추출하고, 이 블록들을 이용하여 손실블록의 움직임벡터를 복구한다. 본 논문에서 제안한 알고리즘은 정확한 손실블록의 움직임 벡터를 찾아 거의 완벽하게 복원하기도 하지만 정확한 움직임벡터를 찾지 못한 경우에는 주변블록과 가장 비슷한 움직임벡터를 찾아서 에러를 은닉하는 효과가 있다. 제안한 방법으로 복원한 영상은 전체적으로 눈에 거슬리는 오류가 생기지 않으므로 주관적인 화질이 좋았다. 또한 객관적인 척도인 PSNR 측면에서는 영상의 움직임 정도에 따라 기존 BMA 방법보다 약 0.5㏈∼l㏈까지의 향상이 있었다.