• Title/Summary/Keyword: Classification Algorithms

Search Result 1,198, Processing Time 0.025 seconds

Analysis of International Research Trends in the Utilization of Digital Technologies for Architectural Heritage: A Case Study of the CIPA2023 International Symposium (건축유산의 디지털 기술 활용에 관한 국제 연구동향 분석: CIPA2023 국제심포지엄 사례를 중심으로)

  • Kang, Hye Ri;Lee, Jong Wook
    • Journal of architectural history
    • /
    • v.32 no.6
    • /
    • pp.63-75
    • /
    • 2023
  • Based on my attendance at the CIPA International Symposium(CIPA2023) organized by the International Scientific Committee on Heritage Documentation(ICOMOS), this paper explored research cases applying digital technologies, including BIM, to architectural heritage. The researches presented at this symposium were categorized into specific areas: data acquisition, data management, data sharing&experience. Through this classification, an analysis of research cases in architectural heritage utilizing digital technology was conducted. By categorizing the 43 academic papers from the CIPA2023 based on research themes, trends in the digital architecture field were analyzed, providing insights into future research directions for the digital acquisition, management, sharing, and experiential aspects of Korean architectural heritage. In conclusion, it is deemed necessary to reference and supplement the methodologies, including algorithms, workflows, and approaches developed in each study, to effectively apply methodologies suitable for the characteristics of Korean architectural heritage and its data.

Evaluating the Efficiency of Models for Predicting Seismic Building Damage (지진으로 인한 건물 손상 예측 모델의 효율성 분석)

  • Chae Song Hwa;Yujin Lim
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.5
    • /
    • pp.217-220
    • /
    • 2024
  • Predicting earthquake occurrences accurately is challenging, and preparing all buildings with seismic design for such random events is a difficult task. Analyzing building features to predict potential damage and reinforcing vulnerabilities based on this analysis can minimize damages even in buildings without seismic design. Therefore, research analyzing the efficiency of building damage prediction models is essential. In this paper, we compare the accuracy of earthquake damage prediction models using machine learning classification algorithms, including Random Forest, Extreme Gradient Boosting, LightGBM, and CatBoost, utilizing data from buildings damaged during the 2015 Nepal earthquake.

Leveraging Analytics for Talent Acquisition: Case of IT Sector in India

  • Avik Ghosh;Bhaskar Basu
    • Asia pacific journal of information systems
    • /
    • v.30 no.4
    • /
    • pp.879-918
    • /
    • 2020
  • One of the challenges faced by Talent Acquisition teams today pertains to the acquisition of human resources by matching job descriptions and skillsets desired. It is more so in the case of competitive sectors like the Indian IT sector. There can be various channels for Talent Acquisition and accordingly, the cost and benefits might vary. However, the consequences of a mismatch have an impact on the quality of deliverables, high recruitment expenses and loss of revenue for the organization. With increased and diverse sources of data that are available to organizations today, there is ample opportunity to apply analytics for informed decision making in this field. This paper reveals useful insights that help streamline the Talent Acquisition process in the Indian IT Industry. The paper adopts a data-centric approach to examine the critical determinants for efficient and effective Talent Acquisition process in IT organizations. Selected supervised machine learning algorithms are applied for the analysis of the dataset. The study is likely to help organizations in reassessing their talent acquisition strategy with respect to key parameters like expected cost to company (CTC), candidate sourcing channels and optimal joining period.

Development of Medical Cost Prediction Model Based on the Machine Learning Algorithm (머신러닝 알고리즘 기반의 의료비 예측 모델 개발)

  • Han Bi KIM;Dong Hoon HAN
    • Journal of Korea Artificial Intelligence Association
    • /
    • v.1 no.1
    • /
    • pp.11-16
    • /
    • 2023
  • Accurate hospital case modeling and prediction are crucial for efficient healthcare. In this study, we demonstrate the implementation of regression analysis methods in machine learning systems utilizing mathematical statics and machine learning techniques. The developed machine learning model includes Bayesian linear, artificial neural network, decision tree, decision forest, and linear regression analysis models. Through the application of these algorithms, corresponding regression models were constructed and analyzed. The results suggest the potential of leveraging machine learning systems for medical research. The experiment aimed to create an Azure Machine Learning Studio tool for the speedy evaluation of multiple regression models. The tool faciliates the comparision of 5 types of regression models in a unified experiment and presents assessment results with performance metrics. Evaluation of regression machine learning models highlighted the advantages of boosted decision tree regression, and decision forest regression in hospital case prediction. These findings could lay the groundwork for the deliberate development of new directions in medical data processing and decision making. Furthermore, potential avenues for future research may include exploring methods such as clustering, classification, and anomaly detection in healthcare systems.

An indoor localization system for estimating human trajectories using a foot-mounted IMU sensor and step classification based on LSTM

  • Ts.Tengis;B.Dorj;T.Amartuvshin;Ch.Batchuluun;G.Bat-Erdene;Kh.Temuulen
    • International journal of advanced smart convergence
    • /
    • v.13 no.1
    • /
    • pp.37-47
    • /
    • 2024
  • This study presents the results of designing a system that determines the location of a person in an indoor environment based on a single IMU sensor attached to the tip of a person's shoe in an area where GPS signals are inaccessible. By adjusting for human footfall, it is possible to accurately determine human location and trajectory by correcting errors originating from the Inertial Measurement Unit (IMU) combined with advanced machine learning algorithms. Although there are various techniques to identify stepping, our study successfully recognized stepping with 98.7% accuracy using an artificial intelligence model known as Long Short-Term Memory (LSTM). Drawing upon the enhancements in our methodology, this article demonstrates a novel technique for generating a 200-meter trajectory, achieving a level of precision marked by a 2.1% error margin. Indoor pedestrian navigation systems, relying on inertial measurement units attached to the feet, have shown encouraging outcomes.

Study on Fault Diagnosis and Data Processing Techniques for Substrate Transfer Robots Using Vibration Sensor Data

  • MD Saiful Islam;Mi-Jin Kim;Kyo-Mun Ku;Hyo-Young Kim;Kihyun Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.45-53
    • /
    • 2024
  • The maintenance of semiconductor equipment is crucial for the continuous growth of the semiconductor market. System management is imperative given the anticipated increase in the capacity and complexity of industrial equipment. Ensuring optimal operation of manufacturing processes is essential to maintaining a steady supply of numerous parts. Particularly, monitoring the status of substrate transfer robots, which play a central role in these processes, is crucial. Diagnosing failures of their major components is vital for preventive maintenance. Fault diagnosis methods can be broadly categorized into physics-based and data-driven approaches. This study focuses on data-driven fault diagnosis methods due to the limitations of physics-based approaches. We propose a methodology for data acquisition and preprocessing for robot fault diagnosis. Data is gathered from vibration sensors, and the data preprocessing method is applied to the vibration signals. Subsequently, the dataset is trained using Gradient Tree-based XGBoost machine learning classification algorithms. The effectiveness of the proposed model is validated through performance evaluation metrics, including accuracy, F1 score, and confusion matrix. The XGBoost classifiers achieve an accuracy of approximately 92.76% and an equivalent F1 score. ROC curves indicate exceptional performance in class discrimination, with 100% discrimination for the normal class and 98% discrimination for abnormal classes.

Study on failure mode prediction of reinforced concrete columns based on class imbalanced dataset

  • Mingyi Cai;Guangjun Sun;Bo Chen
    • Earthquakes and Structures
    • /
    • v.27 no.3
    • /
    • pp.177-189
    • /
    • 2024
  • Accurately predicting the failure modes of reinforced concrete (RC) columns is essential for structural design and assessment. In this study, the challenges of imbalanced datasets and complex feature selection in machine learning (ML) methods were addressed through an optimized ML approach. By combining feature selection and oversampling techniques, the prediction of seismic failure modes in rectangular RC columns was improved. Two feature selection methods were used to identify six input parameters. To tackle class imbalance, the Borderline-SMOTE1 algorithm was employed, enhancing the learning capabilities of the models for minority classes. Eight ML algorithms were trained and fine-tuned using k-fold shuffle split cross-validation and grid search. The results showed that the artificial neural network model achieved 96.77% accuracy, while k-nearest neighbor, support vector machine, and random forest models each achieved 95.16% accuracy. The balanced dataset led to significant improvements, particularly in predicting the flexure-shear failure mode, with accuracy increasing by 6%, recall by 8%, and F1 scores by 7%. The use of the Borderline-SMOTE1 algorithm significantly improved the recognition of samples at failure mode boundaries, enhancing the classification performance of models like k-nearest neighbor and decision tree, which are highly sensitive to data distribution and decision boundaries. This method effectively addressed class imbalance and selected relevant features without requiring complex simulations like traditional methods, proving applicable for discerning failure modes in various concrete members under seismic action.

Investigating Factors Contributing to Inadequate Facility Safety Inspections and Diagnosis Services: A Machine Learning Approach (머신러닝 기반 시설물 안전 점검·진단용역 부실 판정 요인에 대한 연구)

  • Junyong Park;Chie Hoon Song
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.4_2
    • /
    • pp.897-908
    • /
    • 2024
  • Evaluating the adequacy of facility safety inspection and diagnosis services performed by private enterprises is a time-consuming and administratively complex process. This study aims to analyze the determinants that could influence the rating of these safety inspection and diagnosis services using data analytics approach. Through a comparative analysis of several machine learning algorithms suitable for multi-class classification, we selected the model with the best performance (Random Forest) and identified the main determinants using the permutation importance technique. Among the variables examined, "contract value," "days of service performed" and "adherence to fair market value" were found to be strongly correlated with the rating assessments. Furthermore, we discovered that the skills and expertise of service performing personnel significantly impacted the rating. The results of this study can contribute to the enhancement of the current post-evaluation administrative processes and offer valuable insights into rating assessments by incorporating previously unexplored variables pertaining to both service providers and the services itself.

Data Preprocessing and ML Analysis Method for Abnormal Situation Detection during Approach using Domestic Aircraft Safety Data (국내 항공기 위치 데이터를 활용한 이착륙 접근 단계에서의 항공 위험상황 탐지를 위한 데이터 전처리 및 머신 러닝 분석 기법)

  • Sang Ho Lee;Ilrak Son;Kyuho Jeong;Nohsam Park
    • Journal of Platform Technology
    • /
    • v.11 no.5
    • /
    • pp.110-125
    • /
    • 2023
  • In this paper, we utilize time-series aircraft location data measured based on 2019 domestic airports to analyze Go-Around and UOC_D situations during the approach phase of domestic airports. Various clustering-based machine learning techniques are applied to determine the most appropriate analysis method for domestic aviation data through experimentation. The ADS-B sensor is solely employed to measure aircraft positions. We designed a model using clustering algorithms such as K-Means, GMM, and DBSCAN to classify abnormal situations. Among them, the RF model showed the best performance overseas, but through experiments, it was confirmed that the GMM showed the highest classification performance for domestic aviation data by reflecting the aspects specialized in domestic terrain.

  • PDF

Compression and Performance Evaluation of CNN Models on Embedded Board (임베디드 보드에서의 CNN 모델 압축 및 성능 검증)

  • Moon, Hyeon-Cheol;Lee, Ho-Young;Kim, Jae-Gon
    • Journal of Broadcast Engineering
    • /
    • v.25 no.2
    • /
    • pp.200-207
    • /
    • 2020
  • Recently, deep neural networks such as CNN are showing excellent performance in various fields such as image classification, object recognition, visual quality enhancement, etc. However, as the model size and computational complexity of deep learning models for most applications increases, it is hard to apply neural networks to IoT and mobile environments. Therefore, neural network compression algorithms for reducing the model size while keeping the performance have been being studied. In this paper, we apply few compression methods to CNN models and evaluate their performances in the embedded environment. For evaluate the performance, the classification performance and inference time of the original CNN models and the compressed CNN models on the image inputted by the camera are evaluated in the embedded board equipped with QCS605, which is a customized AI chip. In this paper, a few CNN models of MobileNetV2, ResNet50, and VGG-16 are compressed by applying the methods of pruning and matrix decomposition. The experimental results show that the compressed models give not only the model size reduction of 1.3~11.2 times at a classification performance loss of less than 2% compared to the original model, but also the inference time reduction of 1.2~2.21 times, and the memory reduction of 1.2~3.8 times in the embedded board.