• Title/Summary/Keyword: Classification Algorithms

Search Result 1,191, Processing Time 0.033 seconds

A review and comparison of convolution neural network models under a unified framework

  • Park, Jimin;Jung, Yoonsuh
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.2
    • /
    • pp.161-176
    • /
    • 2022
  • There has been active research in image classification using deep learning convolutional neural network (CNN) models. ImageNet large-scale visual recognition challenge (ILSVRC) (2010-2017) was one of the most important competitions that boosted the development of efficient deep learning algorithms. This paper introduces and compares six monumental models that achieved high prediction accuracy in ILSVRC. First, we provide a review of the models to illustrate their unique structure and characteristics of the models. We then compare those models under a unified framework. For this reason, additional devices that are not crucial to the structure are excluded. Four popular data sets with different characteristics are then considered to measure the prediction accuracy. By investigating the characteristics of the data sets and the models being compared, we provide some insight into the architectural features of the models.

Abnormality Detection Control System using Charging Data (충전데이터를 이용한 이상감지 제어시스템)

  • Moon, Sang-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.2
    • /
    • pp.313-316
    • /
    • 2022
  • In this paper, we implement a system that detects abnormalities in the charging data transmitted from the charger during the charging process of electric vehicles and controls them remotely. Using classification algorithms such as logistic regression, KNN, SVM, and decision trees, to do this, an analysis model is created that judges the data received from the charger as normal and abnormal. In addition, a model is created to determine the cause of the abnormality using the existing charging data based on the analysis of the type of charger abnormality. Finally, it is solved using unsupervised learning method to find new patterns of abnormal data.

Discrimination model using denoising autoencoder-based majority vote classification for reducing false alarm rate

  • Heonyong Lee;Kyungtak Yu;Shiu Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3716-3724
    • /
    • 2023
  • Loose parts monitoring and detecting alarm type in real Nuclear Power Plant have challenges such as background noise, insufficient alarm data, and difficulty of distinction between alarm data that occur during start and stop. Although many signal processing methods and alarm determination algorithms have been developed, it is not easy to determine valid alarm and extract the meaning data from alarm signal including background noise. To address these issues, this paper proposes a denoising autoencoder-based majority vote classification. Training and test data are prepared by acquiring alarm data from real NPP and simulation facility for data augmentation, and noisy data is reproduced by adding Gaussian noise. Using DAEs with 3, 5, 7, and 9 layers, features are extracted for each model and classified into neural networks. Finally, the results obtained from each DAE are classified by majority voting. Also, through comparison with other methods, the accuracy and the false alarm rate are compared, and the excellence of the proposed method is confirmed.

An Improved Automated Spectral Clustering Algorithm

  • Xiaodan Lv
    • Journal of Information Processing Systems
    • /
    • v.20 no.2
    • /
    • pp.185-199
    • /
    • 2024
  • In this paper, an improved automated spectral clustering (IASC) algorithm is proposed to address the limitations of the traditional spectral clustering (TSC) algorithm, particularly its inability to automatically determine the number of clusters. Firstly, a cluster number evaluation factor based on the optimal clustering principle is proposed. By iterating through different k values, the value corresponding to the largest evaluation factor was selected as the first-rank number of clusters. Secondly, the IASC algorithm adopts a density-sensitive distance to measure the similarity between the sample points. This rendered a high similarity to the data distributed in the same high-density area. Thirdly, to improve clustering accuracy, the IASC algorithm uses the cosine angle classification method instead of K-means to classify the eigenvectors. Six algorithms-K-means, fuzzy C-means, TSC, EIGENGAP, DBSCAN, and density peak-were compared with the proposed algorithm on six datasets. The results show that the IASC algorithm not only automatically determines the number of clusters but also obtains better clustering accuracy on both synthetic and UCI datasets.

Deep Learning in Dental Radiographic Imaging

  • Hyuntae Kim
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.51 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • Deep learning algorithms are becoming more prevalent in dental research because they are utilized in everyday activities. However, dental researchers and clinicians find it challenging to interpret deep learning studies. This review aimed to provide an overview of the general concept of deep learning and current deep learning research in dental radiographic image analysis. In addition, the process of implementing deep learning research is described. Deep-learning-based algorithmic models perform well in classification, object detection, and segmentation tasks, making it possible to automatically diagnose oral lesions and anatomical structures. The deep learning model can enhance the decision-making process for researchers and clinicians. This review may be useful to dental researchers who are currently evaluating and assessing deep learning studies in the field of dentistry.

Development of a Deep Learning Algorithm for Small Object Detection in Real-Time (실시간 기반 매우 작은 객체 탐지를 위한 딥러닝 알고리즘 개발)

  • Wooseong Yeo;Meeyoung Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.4_2
    • /
    • pp.1001-1007
    • /
    • 2024
  • Recent deep learning algorithms for object detection in real-time play a crucial role in various applications such as autonomous driving, traffic monitoring, health care, and water quality monitoring. The size of small objects, in particular, significantly impacts the accuracy of detection models. However, data containing small objects can lead to underfitting issues in models. Therefore, this study developed a deep learning model capable of quickly detecting small objects to provide more accurate predictions. The RE-SOD (Residual block based Small Object Detector) developed in this research enhances the detection performance for small objects by using RGB separation preprocessing and residual blocks. The model achieved an accuracy of 1.0 in image classification and an mAP50-95 score of 0.944 in object detection. The performance of this model was validated by comparing it with real-time detection models such as YOLOv5, YOLOv7, and YOLOv8.

Hierarchic Document Clustering in OPAC (OPAC에서 자동분류 열람을 위한 계층 클러스터링 연구)

  • 노정순
    • Journal of the Korean Society for information Management
    • /
    • v.21 no.1
    • /
    • pp.93-117
    • /
    • 2004
  • This study is to develop a hierarchic clustering model fur document classification and browsing in OPAC systems. Two automatic indexing techniques (with and without controlled terms), two term weighting methods (based on term frequency and binary weight), five similarity coefficients (Dice, Jaccard, Pearson, Cosine, and Squared Euclidean). and three hierarchic clustering algorithms (Between Average Linkage, Within Average Linkage, and Complete Linkage method) were tested on the document collection of 175 books and theses on library and information science. The best document clusters resulted from the Between Average Linkage or Complete Linkage method with Jaccard or Dice coefficient on the automatic indexing with controlled terms in binary vector. The clusters from Between Average Linkage with Jaccard has more likely decimal classification structure.

Severity-based Fault Prediction using Unsupervised Learning (비감독형 학습 기법을 사용한 심각도 기반 결함 예측)

  • Hong, Euyseok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.3
    • /
    • pp.151-157
    • /
    • 2018
  • Most previous studies of software fault prediction have focused on supervised learning models for binary classification that determines whether an input module has faults or not. However, binary classification model determines only the presence or absence of faults in the module without considering the complex characteristics of the fault, and supervised model has the limitation that it requires a training data set that most development groups do not have. To solve these two problems, this paper proposes severity-based ternary classification model using unsupervised learning algorithms, and experimental results show that the proposed model has comparable performance to the supervised models.

Selecting Fuzzy Rules for Pattern Classification Systems

  • Lee, Sang-Bum;Lee, Sung-joo;Lee, Mai-Rey
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.2
    • /
    • pp.159-165
    • /
    • 2002
  • This paper proposes a GA and Gradient Descent Method-based method for choosing an appropriate set of fuzzy rules for classification problems. The aim of the proposed method is to fond a minimum set of fuzzy rules that can correctly classify all training patterns. The number of inference rules and the shapes of the membership functions in the antecedent part of the fuzzy rules are determined by the genetic algorithms. The real numbers in the consequent parts of the fuzzy rules are obtained through the use of the descent method. A fitness function is used to maximize the number of correctly classified patterns, and to minimize the number of fuzzy rules. A solution obtained by the genetic algorithm is a set of fuzzy rules, and its fitness is determined by the two objectives, in a combinatorial optimization problem. In order to demonstrate the effectiveness of the proposed method, computer simulation results are shown.

A neural network approach to defect classification on printed circuit boards (인쇄 회로 기판의 결함 검출 및 인식 알고리즘)

  • An, Sang-Seop;No, Byeong-Ok;Yu, Yeong-Gi;Jo, Hyeong-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.4
    • /
    • pp.337-343
    • /
    • 1996
  • In this paper, we investigate the defect detection by making use of pre-made reference image data and classify the defects by using the artificial neural network. The approach is composed of three main parts. The first step consists of a proper generation of two reference image data by using a low level morphological technique. The second step proceeds by performing three times logical bit operations between two ready-made reference images and just captured image to be tested. This results in defects image only. In the third step, by extracting four features from each detected defect, followed by assigning them into the input nodes of an already trained artificial neural network we can obtain a defect class corresponding to the features. All of the image data are formed in a bit level for the reduction of data size as well as time saving. Experimental results show that proposed algorithms are found to be effective for flexible defect detection, robust classification, and high speed process by adopting a simple logic operation.

  • PDF