• 제목/요약/키워드: Classification Algorithms

검색결과 1,198건 처리시간 0.034초

Using GAs to Support Feature Weighting and Instance Selection in CBR for CRM

  • 안현철;김경재;한인구
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2005년도 공동추계학술대회
    • /
    • pp.516-525
    • /
    • 2005
  • Case-based reasoning (CBR) has been widely used in various areas due to its convenience and strength in complex problem solving. Generally, in order to obtain successful results from CBR, effective retrieval of useful prior cases for the given problem is essential. However, designing a good matching and retrieval mechanism for CBR systems is still a controversial research issue. Most prior studies have tried to optimize the weights of the features or selection process of appropriate instances. But, these approaches have been performed independently until now. Simultaneous optimization of these components may lead to better performance than in naive models. In particular, there have been few attempts to simultaneously optimize the weight of the features and selection of the instances for CBR. Here we suggest a simultaneous optimization model of these components using a genetic algorithm (GA). We apply it to a customer classification model which utilizes demographic characteristics of customers as inputs to predict their buying behavior for a specific product. Experimental results show that simultaneously optimized CBR may improve the classification accuracy and outperform various optimized models of CBR as well as other classification models including logistic regression, multiple discriminant analysis, artificial neural networks and support vector machines.

  • PDF

Neural and MTS Algorithms for Feature Selection

  • Su, Chao-Ton;Li, Te-Sheng
    • International Journal of Quality Innovation
    • /
    • 제3권2호
    • /
    • pp.113-131
    • /
    • 2002
  • The relationships among multi-dimensional data (such as medical examination data) with ambiguity and variation are difficult to explore. The traditional approach to building a data classification system requires the formulation of rules by which the input data can be analyzed. The formulation of such rules is very difficult with large sets of input data. This paper first describes two classification approaches using back-propagation (BP) neural network and Mahalanobis distance (MD) classifier, and then proposes two classification approaches for multi-dimensional feature selection. The first one proposed is a feature selection procedure from the trained back-propagation (BP) neural network. The basic idea of this procedure is to compare the multiplication weights between input and hidden layer and hidden and output layer. In order to simplify the structure, only the multiplication weights of large absolute values are used. The second approach is Mahalanobis-Taguchi system (MTS) originally suggested by Dr. Taguchi. The MTS performs Taguchi's fractional factorial design based on the Mahalanobis distance as a performance metric. We combine the automatic thresholding with MD: it can deal with a reduced model, which is the focus of this paper In this work, two case studies will be used as examples to compare and discuss the complete and reduced models employing BP neural network and MD classifier. The implementation results show that proposed approaches are effective and powerful for the classification.

Evaluation of User Profile Construction Method by Fuzzy Inference

  • Kim, Byeong-Man;Rho, Sun-Ok;Oh, Sang-Yeop;Lee, Hyun-Ah;Kim, Jong-Wan
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권3호
    • /
    • pp.175-184
    • /
    • 2008
  • To construct user profiles automatically, an extraction method for representative keywords from a set of documents is needed. In our previous works, we suggested such a method and showed its usefulness. Here, we apply it to the classification problem and observe how much it contributes to performance improvement. The method can be used as a linear document classifier with few modifications. So, we first evaluate its performance for that case. The method is also applicable to some non-linear classification methods such as GIS (Generalized Instance Set). In GIS algorithm, generalized instances are built from training documents by a generalization function and then the K-NN algorithm is applied to them, where the method can be used as a generalization function. For comparative works, two famous linear classification methods, Rocchio and Widrow-Hoff algorithms, are also used. Experimental results show that our method is better than the others for the case that only positive documents are considered, but not when negative documents are considered together.

딥 러닝 기법을 이용한 레이더 신호 분류 모델 연구 (Research for Radar Signal Classification Model Using Deep Learning Technique)

  • 김용준;유기훈;한진우
    • 한국군사과학기술학회지
    • /
    • 제22권2호
    • /
    • pp.170-178
    • /
    • 2019
  • Classification of radar signals in the field of electronic warfare is a problem of discriminating threat types by analyzing enemy threat radar signals such as aircraft, radar, and missile received through electronic warfare equipment. Recent radar systems have adopted a variety of modulation schemes that are different from those used in conventional systems, and are often difficult to analyze using existing algorithms. Also, it is necessary to design a robust algorithm for the signal received in the real environment due to the environmental influence and the measurement error due to the characteristics of the hardware. In this paper, we propose a radar signal classification method which are not affected by radar signal modulation methods and noise generation by using deep learning techniques.

딥 러닝 기반의 악성흑색종 분류를 위한 컴퓨터 보조진단 알고리즘 (A Computer Aided Diagnosis Algorithm for Classification of Malignant Melanoma based on Deep Learning)

  • 임상헌;이명숙
    • 디지털산업정보학회논문지
    • /
    • 제14권4호
    • /
    • pp.69-77
    • /
    • 2018
  • The malignant melanoma accounts for about 1 to 3% of the total malignant tumor in the West, especially in the US, it is a disease that causes more than 9,000 deaths each year. Generally, skin lesions are difficult to detect the features through photography. In this paper, we propose a computer-aided diagnosis algorithm based on deep learning for classification of malignant melanoma and benign skin tumor in RGB channel skin images. The proposed deep learning model configures the tumor lesion segmentation model and a classification model of malignant melanoma. First, U-Net was used to segment a skin lesion area in the dermoscopic image. We could implement algorithms to classify malignant melanoma and benign tumor using skin lesion image and results of expert's labeling in ResNet. The U-Net model obtained a dice similarity coefficient of 83.45% compared with results of expert's labeling. The classification accuracy of malignant melanoma obtained the 83.06%. As the result, it is expected that the proposed artificial intelligence algorithm will utilize as a computer-aided diagnosis algorithm and help to detect malignant melanoma at an early stage.

딥러닝 기반의 복합 열화 영상 분류 및 복원 기법 (Classification and Restoration of Compositely Degraded Images using Deep Learning)

  • 윤정언;하지메 나가하라;박인규
    • 방송공학회논문지
    • /
    • 제24권3호
    • /
    • pp.430-439
    • /
    • 2019
  • CNN (convolutional neural network) 기반의 단일 열화 영상 복원 방법은 우수한 성능을 나타내지만 한가지의 특정 열화를 해결하는 데 맞춤화 되어있다. 본 연구에서는 복합적으로 열화 된 영상 분류 및 복원을 위한 알고리즘을 제시한다. 복합 열화 영상 분류 문제를 해결하기 위해 CNN 기반의 알고리즘인 사전 학습된 Inception-v3 네트워크를 활용하고, 영상 열화 복원을 위해 기존의 CNN 기반의 복원 알고리즘을 사용하여 툴체인을 구성한다. 실험적으로 복합 열화 영상의 복원 순서를 추정하였으며, CNN 기반의 영상 화질 측정 알고리즘의 결과와 비교하였다. 제안하는 알고리즘은 추정된 복원 순서를 바탕으로 구현되어 실험 결과를 통해 복합 열화 문제를 효과적으로 해결할 수 있음을 보인다.

스마트 헬스케어 환경에서 복잡도를 고려한 R파 검출 및 QRS 패턴을 통한 향상된 부정맥 분류 방법 (R Wave Detection and Advanced Arrhythmia Classification Method through QRS Pattern Considering Complexity in Smart Healthcare Environments)

  • 조익성
    • 디지털산업정보학회논문지
    • /
    • 제17권1호
    • /
    • pp.7-14
    • /
    • 2021
  • With the increased attention about healthcare and management of heart diseases, smart healthcare services and related devices have been actively developed recently. R wave is the largest representative signal among ECG signals. R wave detection is very important because it detects QRS pattern and classifies arrhythmia. Several R wave detection algorithms have been proposed with different features, but the remaining problem is their implementation in low-cost portable platforms for real-time applications. In this paper, we propose R wave detection based on optimal threshold and arrhythmia classification through QRS pattern considering complexity in smart healthcare environments. For this purpose, we detected R wave from noise-free ECG signal through the preprocessing method. Also, we classify premature ventricular contraction arrhythmia in realtime through QRS pattern. The performance of R wave detection and premature ventricular contraction arrhythmia classification is evaluated by using 9 record of MIT-BIH arrhythmia database that included over 30 premature ventricular contraction. The achieved scores indicate the average of 98.72% in R wave detection and the rate of 94.28% in PVC classification.

A Deep Learning Method for Brain Tumor Classification Based on Image Gradient

  • Long, Hoang;Lee, Suk-Hwan;Kwon, Seong-Geun;Kwon, Ki-Ryong
    • 한국멀티미디어학회논문지
    • /
    • 제25권8호
    • /
    • pp.1233-1241
    • /
    • 2022
  • Tumors of the brain are the deadliest, with a life expectancy of only a few years for those with the most advanced forms. Diagnosing a brain tumor is critical to developing a treatment plan to help patients with the disease live longer. A misdiagnosis of brain tumors will lead to incorrect medical treatment, decreasing a patient's chance of survival. Radiologists classify brain tumors via biopsy, which takes a long time. As a result, the doctor will need an automatic classification system to identify brain tumors. Image classification is one application of the deep learning method in computer vision. One of the deep learning's most powerful algorithms is the convolutional neural network (CNN). This paper will introduce a novel deep learning structure and image gradient to classify brain tumors. Meningioma, glioma, and pituitary tumors are the three most popular forms of brain cancer represented in the Figshare dataset, which contains 3,064 T1-weighted brain images from 233 patients. According to the numerical results, our method is more accurate than other approaches.

암세포 영상분류를 위한 심층학습 모델 연구 (Deep Learning Model for Classification of Multiple Cancer Cell Lines)

  • 박진형;최세운
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.394-396
    • /
    • 2021
  • 특정 질병 진단을 위한 병리 검사는 필수적이며, 최근 이러한 분야의 시간적, 인적 자원의 필요성을 줄이기 위해 인공 지능을 활용한 암세포의 자동분류가 가능한 시스템 구축에 관련된 연구가 활발하게 진행되고 있다. 하지만, 이전 연구에서는 제한적인 심층학습 알고리즘에 기인한 비교적 낮은 정확도로 데이터 처리에 한계가 존재하였다. 본 연구에서는 심층 학습의 일종인 Convolution Neral Network를 통해 4종류의 암세포를 4 Class Classifciation을 시행하는 방법을 제안한다. EfficientNet, ResNet, Inception을 사용하였으며 여러 하이퍼 파라미터 튜닝을 통해 얻은 모델을 앙상블 하여 최종적으로 97.26의 정확도를 얻을 수 있었다.

  • PDF

Construction of an Internet of Things Industry Chain Classification Model Based on IRFA and Text Analysis

  • Zhimin Wang
    • Journal of Information Processing Systems
    • /
    • 제20권2호
    • /
    • pp.215-225
    • /
    • 2024
  • With the rapid development of Internet of Things (IoT) and big data technology, a large amount of data will be generated during the operation of related industries. How to classify the generated data accurately has become the core of research on data mining and processing in IoT industry chain. This study constructs a classification model of IoT industry chain based on improved random forest algorithm and text analysis, aiming to achieve efficient and accurate classification of IoT industry chain big data by improving traditional algorithms. The accuracy, precision, recall, and AUC value size of the traditional Random Forest algorithm and the algorithm used in the paper are compared on different datasets. The experimental results show that the algorithm model used in this paper has better performance on different datasets, and the accuracy and recall performance on four datasets are better than the traditional algorithm, and the accuracy performance on two datasets, P-I Diabetes and Loan Default, is better than the random forest model, and its final data classification results are better. Through the construction of this model, we can accurately classify the massive data generated in the IoT industry chain, thus providing more research value for the data mining and processing technology of the IoT industry chain.