최근 이미지 인식, 영상 인식, 음성 인식, 자연어 처리 등 다양한 분야에 인공지능이 적용되면서 딥러닝(Deep learning) 기술에 관한 관심이 높아지고 있다. 딥러닝 중에서도 가장 대표적인 알고리즘으로 이미지 인식 및 분류에 강점이 있고 각 분야에 많이 쓰이고 있는 CNN(Convolutional Neural Network)에 대한 많은 연구가 진행되고 있다. 본 논문에서는 일반적인 CNN 구조를 변형한 새로운 네트워크 구조를 제안하고자 한다. 일반적인 CNN 구조는 convolution layer, pooling layer, fully-connected layer로 구성된다. 그러므로 본 연구에서는 일반적인 CNN 구조 내부에 FC를 첨가한 새로운 네트워크를 구성하고자 한다. 이러한 변형은 컨볼루션된 이미지에 신경회로망이 갖는 장점인 일반화 기능을 포함시켜 정확도를 올리고자 한다.
본 연구는 지정맥 인식에 중요한 정맥 패턴 특징검출을 위한 알고리즘이다. 특징검출 알고리즘은 패턴인식 시 인식결과에 많은 영향을 끼치므로 중요하다. 인식률은 손가락 위치 변화에 따라 기준도 변화되므로 저하되는 특징을 가지고 있다. 또한, 손가락에 적외선 광을 조사하여 획득한 영상은 영상 배경과 혈관 패턴을 분리하기에 어렵고, 영상 전처리과정을 수행하므로 검출시간이 증대되는 특징을 가지고 있다. 이를 위해, 제시하는 알고리즘은 영상 전처리과정이 없이 수행되어 검출 시간을 줄일 수 있고, 지정맥 영상에 SWDA(Shifted Waveform Data Analysis) 알고리즘을 적용하여 손가락 마디 위치 및 정맥 패턴 검출이 가능한 특징을 가지고 있다. 적외선 투과율이 낮아 상대적으로 어두운 정맥 영상도 검출 오류 최소화가 가능한 특징을 보였다. 또한, 손가락 마디 위치는 분류 단계에서 기준으로 활용하면 인식률 저하를 보완할 수 있는 특징을 가지고 있다. 추후 손바닥, 손목 등 신체 여러 인식분야에 제안하는 알고리즘을 적용한다면 생체 특징 검출 정확도 향상 및 인식 수행 시간 감소에 기여할 것으로 기대된다.
데이터 마이닝에서 데이터를 효율적으로 분류하고자 할 때 많이 사용하고 있는 알고리즘을 실제 자료에 적용시켜 분류성능을 비교하였다. 분류자 생성기법으로는 의사결정나무기법 중의 하나인 CART, 배깅과 부스팅 알고리즘을 CART 모형에 결합한 분류자, 그리고 SVM 분류자를 비교하였다. CART는 결과 해석이 쉬운 장점을 가지고 있지만 데이터에 따라 생성된 분류자가 다양하여 불안정하다는 단점을 가지고 있다. 따라서 이러한 CART의 단점을 보완한 배깅 또는 부스팅 알고리즘과의 결합을 통해 분류자를 생성하고 그 성능에 대해 평가하였다. 또한 최근 들어 분류성능을 인정받고 있는 SVM의 분류성능과도 비교?평가하였다. 각 기법에 의한 분류 결과를 가지고 의사결정나무를 형성하여 자료가 가지는 데이터의 특성에 따른 분류 성능을 알아보았다. 그 결과 데이터의 결측치가 없고 관측값의 수가 적은 경우는 SVM의 분류성능이 뛰어남을 알 수 있었고, 관측값의 수가 많을 때에는 부스팅 알고리즘의 분류성능이 뛰어났으며, 데이터의 결측치가 존재하는 경우는 배깅의 분류성능이 뛰어남을 알 수 있었다.
Background: Korean Working Conditions Surveys (KWCS), referencing European Working Conditions Surveys, have been conducted three times in order to survey working condition and develop work-related policies. However, we found three limitations for managing the collected KWCS data: (1) there was no computerized system for managing data; (2) statistical KWCS data were provided by limited one-way communication; and (3) the concept of a one-time provision of information was pursued. We suggest a web-based public service system that enables ordinary people to make greater use of the KWCS data, which can be managed constantly in the future. Methods: After considering data characteristics, we designed a database, which was able to have the result of all pairwise combinations with two extracted data to construct an analysis system. Using the data of the social network for each user, the tailored analysis system was developed. This system was developed with three methods: clustering and classification for building a social network, and an infographic method for improving readability through a friendly user interface. Results: We developed a database including one input entity consisting of the sociodemographic characteristics and one output entity consisting of working condition characteristics, such as working pattern and work satisfaction. A web-based public service system to provide tailored contents was completed. Conclusion: This study aimed to present a customized analysis system to use the KWCS data efficiently, provide a large amount of data in a form that can give users a better understanding, and lay the ground for helping researchers and policy makers understand the characteristics.
본 논문에서는 인식 단위로서의 개개의 은닉 마코프 모델 (HMM: Hidden Markvo Model)에 대응하는 가중치를 도입하여 HMM출력 스코어는 HMM출력 확률과 HMM 가중치의 곱으로 표현된다고 가정하고 기존의 최소 분류 오류 훈련 방법과 유사하게 HMM 가중치를 반복적으로 훈련하는 방법을 제안하였다. 제안된 방법은 오인식 척도에 대해 차분 (delta) 계수를 정의하고 이를 이용하여 HMM 가중치를 반복하여 훈련하는 방법이다. 이러한 방법은 HMM 가중치의 합을 HMM 개수의 총합으로 제한함으로써 기존의 파라미터 추정 방법과 비터비 (Viterbi) 알고리즘에 큰 변화 없이 음성 인식에 효과적으로 적용될 수 있다. 제안된 방법은 기존의 분할 (segmental) 최소 분류 오류훈련 방법과 비교하여 추정하는 파라미터의 개수가 감소되었으며 훈련 모델의 최적 상태열을 이용한 경도 계산 과정이 포함되지 않음으로써 계산량을 효과적으로 단축할 수 있다. HMM가중치를 이용한 HMM기반의 음성 인식기의 성능 평가를 위해서 단독 숫자음 인식 실험을 실시하였다. 실험적 결과들은 HMM 확률 보정을 이용한 음성 인식 시스템이 베이스라인 시스템보다 음성 인식 성능이 더 우수함을 보여준다. 제안된 방법은 기존의 최소 분류 오류 훈련 방법에 비하여 구현하기 간편한 반면에 더욱 우수한 음성 인식 성능 향상을 보여준다.
국내외에서 이루어진 기존의 인터넷 중독 검사에 대한 연구는 다양하며 방대하지만, 대부분의 연구가 중독도 검사를 위한 항목추출이거나 항목들을 이용한 중독도 분석이었지 항목간의 분석을 통한 차별화는 이루어지지 않았다. 본 논문에서는 리즈렐과 데이터마이닝 기법을 이용하여 Young의 인터넷 중독 검사방법을 고찰하고 문제점을 지적한 후, 검사 방법에 대한 대안을 제안한다. 이를 위해 Young의 척도를 이용하여 청소년 440명을 대상으로 설문을 실시하고, 요인분석을 통해 Young 척도의 문제점을 분석한다. 또한, 데이터 마이닝 알고리즘인 J48 및 PART를 이용하여 설문문항들 중에서 인터넷 중독도를 구분 지을 수 있는 항목들을 선별하고 이를 기반으로 인터넷 중독 학생들을 진단하고 처방하는데 활용하는 방법을 제안한다.
이 논문은 프로토타입 선택 방법을 제안하고, 편의-분산 분해를 이용하여 최근접 이웃 알고리즘과 프로토타입 기반 분류 학습의 일반화 성능 비교 평가에 있다. 제안하는 프로토타입 분류기는 클래스 영역 내에서 가변 반지름을 이용한 다차원 구를 정의하고, 적은 수의 프로토타입으로 구성된 새로운 훈련 데이터 집합을 생성한다. 최근접 이웃 분류기는 새 훈련 집합을 이용하여 테스트 데이터의 클래스를 예측한다. 평균 기대 오류의 편의와 분산 요소를 분해하여 최근접 이웃 규칙, 베이지안 분류기, 고정 반지름을 이용한 프로토타입 선택 방법, 제안하는 프로토타입 선택 방법의 일반화 성능을 비교한다. 실험에서 제안하는 프로토타입 분류기의 편의-분산 변화 추세는 모든 훈련 데이터를 사용하는 최근접 이웃 알고리즘과 비슷한 편의-분산 추세를 보였으며, 프로토타입 선택 비율은 전체 데이터의 평균 약 27.0% 이하로 나타났다.
본 논문에서는 사람의 손동작을 이용해 전자기기를 제어할 수 있도록 다중 도플러 레이다와 머신러닝의 일종인 SVM (Support Vector Machine)을 이용한 손동작 인식 기술을 제안하였다. 하나의 도플러 레이다는 간단한 손동작만을 인식할 수 있는데 반해, 다중 도플러 레이다는 레이다 위치에 따라 각각 다른 도플러 효과가 발생되므로, 이를 이용하여 다양한 손동작을 인식할 수 있다. 또한, 머신러닝 기법을 이용하여 손동작을 분류하면 손동작 인식의 성공률을 높일 수 있다. 다중 도플러 레이다와 머신러닝을 이용한 손동작 인식 시스템의 구현 가능성을 확인하기 위하여 두 개의 도플러 레이다, NI DAQ USB-6008, MATLAB을 이용한 실험 장치를 구성하였다. 구현된 실험 장치를 이용하여 Push, Pull, Right Slide 및 Left Slide의 4가지 손동작 인식 실험을 수행하였고, SVM 모델을 적용하여 손동작 인식의 높은 정확도를 확인하였다.
이 논문에서는 알려지지 않은 PE 파일이 멀웨어의 여부를 분류하는 방법을 연구하였다. 멀웨어 탐지 영역의 분류 문제에서는 특징 추출과 분류가 중요하다. 위와 같은 목적으로 멀웨어 탐지를 위해 우리는 어떠한 특징들이 분류기에 적합한지, 어떠한 분류기가 선택된 특징들에 대해 연구하였다. 그래서 우리는 멀웨어 탐지를 위한 기능과 분류기의 좋은 조합을 찾기 위해 실험하였다. 이를 위해 두 단계로 실험을 실시하였다. 1 단계에서는 Opcode, Windows API, Opcode + Windows API의 특징들을 이용하여 정확도를 비교하였다. 여기에서 Opcode + Windows API 특징이 다른 특징보다 더 좋은 결과를 나타내었다. 2 단계에서는 나이브 베이즈, K-NN, SVM, DT의 분류기들의 AUC 값을 비교하였다. 그 결과 DT의 분류기가 더 좋은 결과 값을 나타내었다.
전자와 컴퓨터 기술의 발전은 무선 센서 네트워크 증대의 토대를 마련하였다. 이에 따라, 센서 네트워크상의 충돌 방지와 인증 기술의 필요성이 증대되어 지고 있다. 센서 네트워크의 충돌 방지를 위해 개발될 알고리즘은 무선 센서 네트워크 플랫폼 상에 쉽게 적용될 수 있으며 또한 동시에 분산 연산, 분산 저장, 데이터 강인성, 센싱된 데이터를 자동 분류할 수 있어야한다. 그리고 무선 센서 네트워크에서 보안을 유지하기 위하여 여러 센서 간에 안전하게 채널을 확립할 수 있어야한다. 본 논문 우리는 센서의 인증과 충돌 방지를 위하여 유비쿼터스 센서 네트워크 채널 확립 알고리즘을 제안하였다. 본 논문에서는 두 가지 다른 형태의 구조를 제안하였으며, 각 구조에서는 센서 노드 사이에서 채널을 확립하기위하여 웨이블렛 필터를 사용한 알고리즘과 센서의 충돌 방지를 위하여 BIBD(Balanced Incomplete Block Design) 코드를 사용하였다. 결과적으로, BIBD와 웨이블렛 필터 기반으로 제안된 알고리즘은 이상적인 환경에서 98% 충돌 검출율을 가졌다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.