• Title/Summary/Keyword: Classification Accuracy Comparison

Search Result 257, Processing Time 0.023 seconds

Comparison of Visual Interpretation and Image Classification of Satellite Data

  • Lee, In-Soo;Shin, Dong-Hoon;Ahn, Seung-Mahn;Lee, Kyoo-Seock;Jeon, Seong-Woo
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.3
    • /
    • pp.163-169
    • /
    • 2002
  • The land uses of Korean peninsula are very complicated and high-density. Therefore, the image classification using coarse resolution satellite images may not provide good results for the land cover classification. The purpose of this paper is to compare the classification accuracy of visual interpretation with that of digital image classification of satellite remote sensing data such as 20m SPOT and 30m TM. In this study, hybrid classification was used. Classification accuracy was assessed by comparing each classification result with reference data obtained from KOMPSAT-1 EOC imagery, air photos, and field surveys.

Comparison of Hyperspectral and Multispectral Sensor Data for Land Use Classification

  • Kim, Dae-Sung;Han, Dong-Yeob;Yun, Ki;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.388-393
    • /
    • 2002
  • Remote sensing data is collected and analyzed to enhance understanding of the terrestrial surface. Since Landsat satellite was launched in 1972, many researches using multispectral data has been achieved. Recently, with the availability of airborne and satellite hyperspectral data, the study on hyperspectral data are being increased. It is known that as the number of spectral bands of high-spectral resolution data increases, the ability to detect more detailed cases should also increase, and the classification accuracy should increase as well. In this paper, we classified the hyperspectral and multispectral data and tested the classification accuracy. The MASTER(MODIS/ASTER Airborne Simulator, 50channels, 0.4~13$\mu$m) and Landsat TM(7channels) imagery including Yeong-Gwang area were used and we adjusted the classification items in several cases and tested their classification accuracy through statistical comparison. As a result of this study, it is shown that hyperspectral data offer more information than multispectral data.

  • PDF

The Comparison of Visual Interpretation & Digital Classification of SPOT Satellite Image

  • Lee, Kyoo-Seock;Lee, In-Soo;Jeon, Seong-Woo
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.433-438
    • /
    • 1999
  • The land use type of Korea is high-density. So, the image classification using coarse resolution satellite image may not provide land cover classification results as good as expected. The purpose of this paper is to compare the result of visual interpretation with that of digital image classification of 20 m resolution SPOT satellite image at Kwangju-eup, Kyunggi-do, Korea. Classes are forest, cultivated field, pasture, water and residential area, which are clearly discriminated in visual interpretation. Maximum likelihood classifier was used for digital image classification. Accuracy assessment was done by comparing each classification result with ground truth data obtained from field checking. The classification result from the visual interpretation presented an total accuracy 9.23 percent higher than that of the digital image classification. This proves the importance of visual interpretation for the area with high density land use like the study site in Korea.

  • PDF

A Study on the Attributes Classification of Agricultural Land Based on Deep Learning Comparison of Accuracy between TIF Image and ECW Image (딥러닝 기반 농경지 속성분류를 위한 TIF 이미지와 ECW 이미지 간 정확도 비교 연구)

  • Kim, Ji Young;Wee, Seong Seung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.6
    • /
    • pp.15-22
    • /
    • 2023
  • In this study, We conduct a comparative study of deep learning-based classification of agricultural field attributes using Tagged Image File (TIF) and Enhanced Compression Wavelet (ECW) images. The goal is to interpret and classify the attributes of agricultural fields by analyzing the differences between these two image formats. "FarmMap," initiated by the Ministry of Agriculture, Food and Rural Affairs in 2014, serves as the first digital map of agricultural land in South Korea. It comprises attributes such as paddy, field, orchard, agricultural facility and ginseng cultivation areas. For the purpose of comparing deep learning-based agricultural attribute classification, we consider the location and class information of objects, as well as the attribute information of FarmMap. We utilize the ResNet-50 instance segmentation model, which is suitable for this task, to conduct simulated experiments. The comparison of agricultural attribute classification between the two images is measured in terms of accuracy. The experimental results indicate that the accuracy of TIF images is 90.44%, while that of ECW images is 91.72%. The ECW image model demonstrates approximately 1.28% higher accuracy. However, statistical validation, specifically Wilcoxon rank-sum tests, did not reveal a significant difference in accuracy between the two images.

Classification of tree species using high-resolution QuickBird-2 satellite images in the valley of Ui-dong in Bukhansan National Park

  • Choi, Hye-Mi;Yang, Keum-Chul
    • Journal of Ecology and Environment
    • /
    • v.35 no.2
    • /
    • pp.91-98
    • /
    • 2012
  • This study was performed in order to suggest the possibility of tree species classification using high-resolution QuickBird-2 images spectral characteristics comparison(digital numbers [DNs]) of tree species, tree species classification, and accuracy verification. In October 2010, the tree species of three conifers and eight broad-leaved trees were examined in the areas studied. The spectral characteristics of each species were observed, and the study area was classified by image classification. The results were as follows: Panchromatic and multi-spectral band 4 was found to be useful for tree species classification. DNs values of conifers were lower than broad-leaved trees. Vegetation indices such as normalized difference vegetation index (NDVI), soil brightness index (SBI), green vegetation index (GVI) and Biband showed similar patterns to band 4 and panchromatic (PAN); Tukey's multiple comparison test was significant among tree species. However, tree species within the same genus, such as $Pinus$ $densiflora-P.$ $rigida$ and $Quercus$ $mongolica-Q.$ $serrata$, showed similar DNs patterns and, therefore, supervised classification results were difficult to distinguish within the same genus; Random selection of validation pixels showed an overall classification accuracy of 74.1% and Kappa coefficient was 70.6%. The classification accuracy of $Pterocarya$ $stenoptera$, 89.5%, was found to be the highest. The classification accuracy of broad-leaved trees was lower than expected, ranging from 47.9% to 88.9%. $P.$ $densiflora-P.$ $rigida$ and $Q.$ $mongolica-Q.$ $serrata$ were classified as the same species because they did not show significant differences in terms of spectral patterns.

A comparison of neural networks and maximum likelihood classifier for the classification of land-cover (토지피복분류에 있어 신경망과 최대우도분류기의 비교)

  • Jeon, Hyeong-Seob;Cho, Gi-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.8 no.2 s.16
    • /
    • pp.23-33
    • /
    • 2000
  • On this study, Among the classification methods of land cover using satellite imagery, we compared the classification accuracy of Neural Network Classifier and that of Maximum Likelihood Classifier which has the characteristics of parametric and non-parametric classification method. In the assessment of classification accuracy, we analyzed the classification accuracy about testing area as well as training area that many analysts use generally when assess the classification accuracy. As a result, Neural Network Classifier is superior to Maximum Likelihood Classifier as much as 3% in the classification of training data. When ground reference data is used, we could get poor result from both of classification methods, but we could reach conclusion that the classification result of Neural Network Classifier is superior to the classification result of Maximum Likelihood Classifier as much as 10%.

  • PDF

A Comparative Study of Wetland Change Detection Techniques Using Post-Classification Comparison and Image Differencing on Landsat-5 TM Data (랜�V-5호(號) TM 데이타를 이용(利用)한 구분후(區分后) 비교(比較) 및 영상대차(映像對差)의 습지대(濕地帶) 변화(變化) 탐지(探知) 기법(技法)에 관(關)한 비교연구(比較硏究))

  • Choung, Song Hak;Ulliman, Joseph J.
    • Journal of Korean Society of Forest Science
    • /
    • v.81 no.4
    • /
    • pp.346-356
    • /
    • 1992
  • The extensive Snake River floodplain in Northwest United States has experienced major changes in water channels and vegetation types due to floodings. To detect the change of wetland cover-types for the period of 1985 and 1988, post-classification comparison and image differencing change detection techniques were evaluated using Landsat-5 TM digital data. Differenced infrared-band images indicated better accuracy indices than any visible-band images. A thresholding technique was applied to identify the change and no change categories from the transformed images produced by image differencing. The problems in using different accuracy indices, including the Kappa coefficient of agreement, overall accuracy, producer's accuracy, user's accuracy, and average accuracy(based on both the producer's and user's accuracy approaches) in determining an optimal threshold level, were examined.

  • PDF

Development of Classification Technique of Point Cloud Data Using Color Information of UAV Image

  • Song, Yong-Hyun;Um, Dae-Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.4
    • /
    • pp.303-312
    • /
    • 2017
  • This paper indirectly created high density point cloud data using unmanned aerial vehicle image. Then, we tried to suggest new concept of classification technique where particular objects from point cloud data can be selectively classified. For this, we established the classification technique that can be used as search factor in classifying color information in point cloud data. Then, using suggested classification technique, we implemented object classification and analyzed classification accuracy by relative comparison with self-created proof resource. As a result, the possibility of point cloud data classification was observable using the image's information. Furthermore, it was possible to classify particular object's point cloud data in high classification accuracy.

Performance Comparison of Naive Bayesian Learning and Centroid-Based Classification for e-Mail Classification (전자메일 분류를 위한 나이브 베이지안 학습과 중심점 기반 분류의 성능 비교)

  • Kim, Kuk-Pyo;Kwon, Young-S.
    • IE interfaces
    • /
    • v.18 no.1
    • /
    • pp.10-21
    • /
    • 2005
  • With the increasing proliferation of World Wide Web, electronic mail systems have become very widely used communication tools. Researches on e-mail classification have been very important in that e-mail classification system is a major engine for e-mail response management systems which mine unstructured e-mail messages and automatically categorize them. In this research we compare the performance of Naive Bayesian learning and Centroid-Based Classification using the different data set of an on-line shopping mall and a credit card company. We analyze which method performs better under which conditions. We compared classification accuracy of them which depends on structure and size of train set and increasing numbers of class. The experimental results indicate that Naive Bayesian learning performs better, while Centroid-Based Classification is more robust in terms of classification accuracy.

EVALUATION OF SPEED AND ACCURACY FOR COMPARISON OF TEXTURE CLASSIFICATION IMPLEMENTATION ON EMBEDDED PLATFORM

  • Tou, Jing Yi;Khoo, Kenny Kuan Yew;Tay, Yong Haur;Lau, Phooi Yee
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.89-93
    • /
    • 2009
  • Embedded systems are becoming more popular as many embedded platforms have become more affordable. It offers a compact solution for many different problems including computer vision applications. Texture classification can be used to solve various problems, and implementing it in embedded platforms will help in deploying these applications into the market. This paper proposes to deploy the texture classification algorithms onto the embedded computer vision (ECV) platform. Two algorithms are compared; grey level co-occurrence matrices (GLCM) and Gabor filters. Experimental results show that raw GLCM on MATLAB could achieves 50ms, being the fastest algorithm on the PC platform. Classification speed achieved on PC and ECV platform, in C, is 43ms and 3708ms respectively. Raw GLCM could achieve only 90.86% accuracy compared to the combination feature (GLCM and Gabor filters) at 91.06% accuracy. Overall, evaluating all results in terms of classification speed and accuracy, raw GLCM is more suitable to be implemented onto the ECV platform.

  • PDF