• 제목/요약/키워드: Classical summation theorems

검색결과 13건 처리시간 0.027초

NOTE ON THE CLASSICAL WATSON'S THEOREM FOR THE SERIES 3F2

  • Choi, Junesang;Agarwal, P.
    • 호남수학학술지
    • /
    • 제35권4호
    • /
    • pp.701-706
    • /
    • 2013
  • Summation theorems for hypergeometric series $_2F_1$ and generalized hypergeometric series $_pF_q$ play important roles in themselves and their diverse applications. Some summation theorems for $_2F_1$ and $_pF_q$ have been established in several or many ways. Here we give a proof of Watson's classical summation theorem for the series $_3F_2$(1) by following the same lines used by Rakha [7] except for the last step in which we applied an integral formula introduced by Choi et al. [3].

NEW SERIES IDENTITIES FOR ${\frac{1}{\Pi}}$

  • Awad, Mohammed M.;Mohammed, Asmaa O.;Rakha, Medhat A.;Rathie, Arjun K.
    • 대한수학회논문집
    • /
    • 제32권4호
    • /
    • pp.865-874
    • /
    • 2017
  • In the theory of hypergeometric and generalized hypergeometric series, classical summation theorems have been found interesting applications in obtaining various series identities for ${\Pi}$, ${\Pi}^2$ and ${\frac{1}{\Pi}}$. The aim of this research paper is to provide twelve general formulas for ${\frac{1}{\Pi}}$. On specializing the parameters, a large number of very interesting series identities for ${\frac{1}{\Pi}}$ not previously appeared in the literature have been obtained. Also, several other results for multiples of ${\Pi}$, ${\Pi}^2$, ${\frac{1}{{\Pi}^2}}$, ${\frac{1}{{\Pi}^3}}$ and ${\frac{1}{\sqrt{\Pi}}}$ have been obtained. The results are established with the help of the extensions of classical Gauss's summation theorem available in the literature.

EVALUATION OF A NEW CLASS OF DOUBLE DEFINITE INTEGRALS

  • Gaboury, Sebastien;Rathie, Arjun Kumar
    • 대한수학회논문집
    • /
    • 제32권4호
    • /
    • pp.979-990
    • /
    • 2017
  • Inspired by the results obtained by Brychkov ([2]), the authors evaluate a large number of new and interesting double definite integrals. The results are obtained with the use of classical hypergeometric summation theorems and a well-known double finite integral due to Edwards ([3]). The results are given in terms of Psi and Hurwitz zeta functions suitable for numerical computations.

Generalizations of Dixon's and Whipple's Theorems on the Sum of a 3F2

  • Choi, Junesang;Malani, Shaloo;Rathie, Arjun K.
    • Kyungpook Mathematical Journal
    • /
    • 제47권3호
    • /
    • pp.449-454
    • /
    • 2007
  • InIn this paper we consider generalizations of the classical Dixon's theorem and the classical Whipple's theorem on the sum of a $_3F_2$. The results are derived with the help of generalized Watson's theorem obtained earlier by Mitra. A large number of results contiguous to Dixon's and Whipple's theorems obtained earlier by Lavoie, Grondin and Rathie, and Lavoie, Grondin, Rathie and Arora follow special cases of our main findings.

  • PDF

A NOTE ON CERTAIN LAPLACE TRANSFORMS FOR THE GENERALIZED HYPERGEOMETRIC FUNCTION 3F3

  • Kim, Insuk;Jun, Sungtae
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제25권1호
    • /
    • pp.7-16
    • /
    • 2018
  • The main objective of this paper is to demonstrate how one can obtain very quickly so far unknown Laplace transforms of rather general cases of the generalized hypergeometric function $_3F_3$ by employing generalizations of classical summation theorems for the series $_3F_2$ available in the literature. Several new as well known results obtained earlier by Kim et al. follow special cases of main findings.

A CLASS OF DEFINITE INTEGRALS

  • Kim, Insuk
    • 호남수학학술지
    • /
    • 제39권3호
    • /
    • pp.453-463
    • /
    • 2017
  • The aim of this paper is to provide a class of six definite general integrals in terms of gamma function. The results are established with the help of generalized summation formulas obtained earlier by Rakha and Rathie. The results established in this paper are simple, interesting, easily established and may be useful potentially.

ON BASIC ANALOGUE OF CLASSICAL SUMMATION THEOREMS DUE TO ANDREWS

  • Harsh, Harsh Vardhan;Rathie, Arjun K.;Purohit, Sunil Dutt
    • 호남수학학술지
    • /
    • 제38권1호
    • /
    • pp.25-37
    • /
    • 2016
  • In 1972, Andrews derived the basic analogue of Gauss's second summation theorem and Bailey's theorem by implementing basic analogue of Kummer's theorem into identity due to Jackson. Recently Lavoie et.al. derived many results closely related to Kummer's theorem, Gauss's second summation theorem and Bailey's theorem and also Rakha et. al. derive the basic analogues of results closely related Kummer's theorem. The aim of this paper is to derive basic analogues of results closely related Gauss's second summation theorem and Bailey's theorem. Some applications and limiting cases are also considered.