• Title/Summary/Keyword: Classical Plate Theory

Search Result 179, Processing Time 0.019 seconds

Deducing thick plate solutions from classical thin plate solutions

  • Wang, C.M.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.1
    • /
    • pp.89-104
    • /
    • 2001
  • This paper reviews the author's work on the development of relationships between solutions of the Kirchhoff (classical thin) plate theory and the Mindlin (first order shear deformation) thick plate theory. The relationships for deflections, stress-resultants, buckling loads and natural frequencies enable one to obtain the Mindlin plate solutions from the well-known Kirchhoff plate solutions for the same problem without much tedious mathematics. Sample thick plate solutions, deduced from the relationships, are presented as benchmark solutions for researchers to use in checking their numerical thick plate solutions.

A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate

  • Tounsi, Abdelouahed;Houari, Mohammed Sid Ahmed;Bessaim, Aicha
    • Structural Engineering and Mechanics
    • /
    • v.60 no.4
    • /
    • pp.547-565
    • /
    • 2016
  • In this work a new 3-unknown non-polynomial shear deformation theory for the buckling and vibration analyses of functionally graded material (FGM) sandwich plates is presented. The present theory accounts for non-linear in plane displacement and constant transverse displacement through the plate thickness, complies with plate surface boundary conditions, and in this manner a shear correction factor is not required. The main advantage of this theory is that, in addition to including the shear deformation effect, the displacement field is modelled with only 3 unknowns as the case of the classical plate theory (CPT) and which is even less than the first order shear deformation theory (FSDT). The plate properties are assumed to vary according to a power law distribution of the volume fraction of the constituents. Equations of motion are derived from the Hamilton's principle. Analytical solutions of natural frequency and critical buckling load for functionally graded sandwich plates are obtained using the Navier solution. The results obtained for plate with various thickness ratios using the present non-polynomial plate theory are not only substantially more accurate than those obtained using the classical plate theory, but are almost comparable to those obtained using higher order theories with more number of unknown functions.

Non-classical plate model for single-layered graphene sheet for axial buckling

  • Safaei, Babak;Khoda, Farzad Hamed;Fattahi, A.M.
    • Advances in nano research
    • /
    • v.7 no.4
    • /
    • pp.265-275
    • /
    • 2019
  • In this work, the effect of size on the axial buckling behavior of single-layered graphene sheets embedded in elastic media is studied. We incorporate Eringen's nonlocal elasticity equations into three plate theories of first order shear deformation theory, higher order shear deformation theory, and classical plate theory. The surrounding elastic media are simulated using Pasternak and Winkler foundation models and their differences are evaluated. The results obtained from different nonlocal plate theories include the values of Winkler and Pasternak modulus parameters, mode numbers, nonlocal parameter, and side lengths of square SLGSs. We show here that axial buckling behavior strongly depends on modulus and nonlocal parameters, which have different values for different mode numbers and side lengths. In addition, we show that in different nonlocal plate theories, nonlocality is more influential in first order shear deformation theory, especially in certain range of nonlocal parameters.

Vibration of a Circular plate on Pasternak foundation with variable modulus due to moving mass

  • Alile, Mohsen Rezvani;Foyouzat, Mohammad Ali;Mofid, Massood
    • Structural Engineering and Mechanics
    • /
    • v.83 no.6
    • /
    • pp.757-770
    • /
    • 2022
  • In this paper, the vibration of a moderately thick plate to a moving mass is investigated. Pasternak foundation with a variable subgrade modulus is considered to tackle the shortcomings of Winkler model, and an analytical-numerical solution is proposed based on the eigenfunction expansion method. Parametric studies by using both CPT (Classical Plate Theory) and FSDT (First-Order Shear Deformation Plate Theory) are carried out, and, the differences between them are also highlighted. The obtained results reveal that utilizing FSDT without considering the rotary inertia leads to a smaller deflection in comparison with CPT pertaining to a thin plate, while it demonstrates a greater response for plates of higher thicknesses. Moreover, it is shown that CPT is unable to properly capture the variation of the plate thickness, thereby diminishing the accuracy as the thickness increases. The outcomes also indicate that the presence of a foundation contributes more to the dynamic response of thin plates in comparison to moderately thick plates. Furthermore, the findings suggest that the performance of the moving force approach for a moderately thick plate, in contrast to a thin plate, appears to be acceptable and it even provides a much better estimation in the presence of a foundation.

An analytical study of stresses in a square flat plate subjected to a concentrated load using the three-dimensional theory of elasticity (集中荷重을 받는 正方形 平板의 三次元 彈性理論에 의한 應力解析)

  • 양인영;정태권;이상호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.323-329
    • /
    • 1989
  • In the stress analysis of plate, Classical plate theories are generally used. But, in applying these theories the stresses underneath the concentrated load point cannot be analyzed because the solution of stress fails to converge. In this paper, therefore, an attempt is made to analyze the stresses directly underneath the concentrated load point for a supported square plate by using the three dimensional theory of elasticity and the potential theory of displacement on the supposition that uniformly distributed load acts on the central part of it. In order to clarify the validity of the theoretical analysis, experiments for strain are carride out with a square plate. It is shown that these theoretical results are in close agreement with experimental results. Specially, this analysis is in a good agreement with actual phenomenon in case of the thick plate.

Free vibration of functionally graded thin elliptic plates with various edge supports

  • Pradhan, K.K.;Chakraverty, S.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.337-354
    • /
    • 2015
  • In this article, free vibration of functionally graded (FG) elliptic plates subjected to various classical boundary conditions has been investigated. Literature review reveals no study has been performed based on functionally graded elliptic plates till date. The mechanical kinematic relations are considered based on classical plate theory. Rayleigh-Ritz technique is used to obtain the generalized eigenvalue problem. The material properties of the FG plate are assumed to vary along thickness direction of the constituents according to power-law form. Trial functions denoting the displacement components are expressed in simple algebraic polynomial forms which can handle any edge support. The objective is to study the effect of geometric configurations and gradation of constituent volume fractions on the natural frequencies. New results for frequency parameters are incorporated after performing a test of convergence. A comparison study is carried out with existing literature for validation in special cases. Three-dimensional mode shapes for circular and elliptic FG plates are also presented with various boundary conditions at the edges.

Free vibration behavior of viscoelastic annular plates using first order shear deformation theory

  • Moshir, Saeed Khadem;Eipakchi, Hamidreza;Sohani, Fatemeh
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.607-618
    • /
    • 2017
  • In this paper, an analytical procedure based on the perturbation technique is presented to study the free vibrations of annular viscoelastic plates by considering the first order shear deformation theory as the displacement field. The viscoelastic properties obey the standard linear solid model. The equations of motion are extracted for small deflection assumption using the Hamilton's principle. These equations which are a system of partial differential equations with variable coefficients are solved analytically with the perturbation technique. By using a new variable change, the governing equations are converted to equations with constant coefficients which have the analytical solution and they are appropriate especially to study the sensitivity analysis. Also the natural frequencies are calculated using the classical plate theory and finite elements method. A parametric study is performed and the effects of geometry, material and boundary conditions are investigated on the vibrational behavior of the plate. The results show that the first order shear deformation theory results is more closer than to the finite elements with respect to the classical plate theory for viscoelastic plate. The more results are summarized in conclusion section.

Cylindrical bending of multilayered composite laminates and sandwiches

  • Sayyad, Atteshamuddin S.;Ghugal, Yuwaraj M.
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.2
    • /
    • pp.113-148
    • /
    • 2016
  • In a whole variety of higher order plate theories existing in the literature no consideration is given to the transverse normal strain / deformation effects on flexural response when these higher order theories are applied to shear flexible composite plates in view of minimizing the number of unknown variables. The objective of this study is to carry out cylindrical bending of simply supported laminated composite and sandwich plates using sinusoidal shear and normal deformation plate theory. The most important feature of the present theory is that it includes the effects of transverse normal strain/deformation. The displacement field of the presented theory is built upon classical plate theory and uses sine and cosine functions in terms of thickness coordinate to include the effects of shear deformation and transverse normal strain. The theory accounts for realistic variation of the transverse shear stress through the thickness and satisfies the shear stress free conditions at the top and bottom surfaces of the plate without using the problem dependent shear correction factor. Governing equations and boundary conditions of the theory are obtained using the principle of minimum potential energy. The accuracy of the proposed theory is examined for several configurations of laminates under various static loadings. Some problems are presented for the first time in this paper which can become the base for future research. For the comparison purpose, the numerical results are also generated by using higher order shear deformation theory of Reddy, first-order shear deformation plate theory of Mindlin and classical plate theory. The numerical results show that the present theory provides displacements and stresses very accurately as compared to those obtained by using other theories.

Bending response of functionally graded piezoelectric plates using a two-variable shear deformation theory

  • Zenkour, Ashraf M.;Hafed, Zahra S.
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.2
    • /
    • pp.115-134
    • /
    • 2020
  • This paper proposes a bending analysis for a functionally graded piezoelectric (FGP) plate through utilizing a two-variable shear deformation plate theory under simply-supported edge conditions. The number of unknown functions used in this theory is only four. The electric potential distribution is assumed to be a combination of a cosine function along the cartesian coordinate. Applying the analytical solutions of FGP plate by using Navier's approach and the principle of virtual work, the equilibrium equations are derived. The paper also discusses thoroughly the impact of applied electric voltage, plate's aspect ratio, thickness ratio and inhomogeneity parameter. Results are compared with the analytical solution obtained by classical plate theory, first-order-shear deformation theory, higher-order shear deformation plate theories and quasi-three-dimensional sinusoidal shear deformation plate theory.

Small scale effect on the vibration of non-uniform nanoplates

  • Chakraverty, S.;Behera, Laxmi
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.495-510
    • /
    • 2015
  • Free vibration of non-uniform embedded nanoplates based on classical (Kirchhoff's) plate theory in conjunction with nonlocal elasticity theory has been studied. The nanoplate is assumed to be rested on two-parameter Winkler-Pasternak elastic foundation. Non-uniform material properties of nanoplates have been considered by taking linear as well as quadratic variations of Young's modulus and density along the space coordinates. Detailed analysis has been reported for all possible casesof such variations. Trial functions denoting transverse deflection of the plate are expressed in simple algebraic polynomial forms. Application of the present method converts the problem into generalised eigen value problem. The study aims to investigate the effects of non-uniform parameter, elastic foundation, nonlocal parameter, boundary condition, aspect ratio and length of nanoplates on the frequency parameters. Three-dimensional mode shapes for some of the boundary conditions have also been illustrated. One may note that present method is easier to handle any sets of boundary conditions at the edges.