• Title/Summary/Keyword: Class-D amplifier

Search Result 140, Processing Time 0.022 seconds

A Study on Linearity and Efficiency Enhancement of Power Amplifier (전력증폭기의 선형성 및 효율 향상에 관한 연구)

  • Jeon Joong-Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.618-627
    • /
    • 2005
  • In this paper, we have compared and analyzed the performance of high amplifier using Doherty technique to improve linearity and efficiency of base station and repeater Power amplifier for WCDMA. This Doherty amplifier implements with 3dB branch line coupler and $90^{\circ}C$ transmission line The phase offset line is designed to maintain the high linearity and efficiency at the low efficiency Period of the power amplifier CW 1-tone experimental results at the WCDMA frequency $2.11{\sim}2.17GHz$ shows that Doherty amplifier which achieves power add efficiency(PAE) of 50% at 6dB back off the point from maximum output power 52.3 dBm, obtains higher efficiency of 13.3% than class AB Finding optimum bias Point after adjusted gate voltage, Doherty amplifier shows that $IMD_3$ improves 4dB.

A Study on Efficiency Extension of a High Power Doherty Amplifier Using Unequal LDMOS FET's (불 균등한 LDMOS FET를 이용한 고 출력 도허티 증폭기의 효율 확장에 관한 연구)

  • Hwang, In-Hong;Kim, Jong-Heon
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.81-86
    • /
    • 2005
  • In this paper, we present an efficiency extension of Doherty power amplifier using LDMOS FET devices with different peak output powers and an unequal power divider. The amplifier is designed by using a MRF21045 with P1 dB of 45 W as the main amplifier biased for Class-AB operation and a MRF21090 with P1 dB of 90 W as the peaking amplifier biased for Class-C operation. The input power is divided into a 1:1.5 power ratio between the main and peaking amplifier. The simulated results of the proposed Doherty amplifier shows an efficiency improvement of approximately 19 % in comparison to the class-AB amplifier at an output power of 42.5 dBm. The fabricated Doherty amplifier obtained a PAE of 33.68 % at 9 dB backed off from P1 dB of 51.5 dBm.

  • PDF

A Design of High Efficiency Doherty Power Amplifier for Microwave applications (마이크로파용 고효율 Doherty 전력 증폭기 설계)

  • Oh C.G.;Kim D.O.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.06b
    • /
    • pp.91-96
    • /
    • 2006
  • In this paper, the high efficiency Doherty power amplifier has been designed and realized for microwave applications. The Doherty amplifier has been implemented using silicon MRF 281 LOMOS FET. The RF performances of the Doherty power amplifier (a combination of a class AB carrier amplifier and a bias..tuned class C peaking amplifier) have been compared with those of a class AB amplifier alone. The realized Doherty power amplifier PldB output power has 33dBm at 2.3GHz frequency. Also the Doherty power amplifier shows 11dB gain and -17.8dB input return loss at 2.3GHz to 2.4GHz. The designed Doherty amplifier has been improved the average PAE by 10% higher efficiency than a class AB amplifier alone. The Maximum PAE of designed Doherty power amplifier has been 39%.

  • PDF

Modeling and Analysis of Class D Audio Amplifiers using Control Theories (제어이론을 이용한 D급 디지털 오디오 증폭기의 모델링과 해석)

  • Ryu, Tae-Ha;Ryu, Ji-Yeol;Doh, Tae-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.385-391
    • /
    • 2007
  • A class D digital audio amplifier with small size, low cost, and high quality is positively necessary in the multimedia era. Since the digital audio amplifier is based on the PWM signal processing, it is improper to analyze the principle of signal generation using linear system theories. In this paper, a class D digital audio amplifier based ADSM (Advanced Delta-Sigma Modulation) is considered. We first model the digital audio amplifier and then explain the operation principle using variable structure control algorithm. Moreover, the ripple signal generated by the hysteresis in the comparator has a significant effect on the system performance. Thus, we present a method to find the magnitude and the frequency of the ripple signal using describing function. Finally, simulations and experiments are provided to show the validity of the proposed methods.

Class D Amplifier Using Multi-Level switching and ZVS (Multi-Level Switching과 ZVS를 이용한 Class D Amplifier)

  • Kim Duil;Kim Hee-Jun;Cho Kyu-Min
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1154-1157
    • /
    • 2004
  • This paper presents design of a class D Amplifier using multi-level switching and Zero-Voltage-Switching(ZVS) technique. The amplifier circuit features zero voltage switching at all switches of the circuit and multi-level switching operation so that the higher efficiency and lower THD could be achieved. A 50-W prototype D class amplifier built and tested it. As a result, the maximum efficiency of $96\%$ and the THD of under $60\%$ were obtained.

  • PDF

Design of High Efficiency Switching Mode Class E Power Amplifier and Transmitter for 2.45 GHz ISM Band (2.45 GHz ISM대역 고효율 스위칭모드 E급 전력증폭기 및 송신부 설계)

  • Go, Seok-Hyeon;Koo, Kyung-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.2
    • /
    • pp.107-114
    • /
    • 2020
  • A power amplifier of 2.4 GHz ISM band is designed to implement a transmitter system. High efficiency amplifiers can be implemented as class E or class F amplifiers. This study has designed a 20 W high efficiency class E amplifier that has simple circuit structure in order to utilize for the ISM band application. The impedance matching circuit was designed by class E design theory and circuit simulation. The designed amplifier has the output power of 44.2 dBm and the power added efficiency of 69% at 2.45 GHz. In order to apply 30 dBm input power to the designed power amplifier, voltage controlled oscillator (VCO) and driving amplifier have been fabricated for the input feeding circuit. The measurement of the power amplifier shows 43.2 dBm output and 65% power added efficiency. This study can be applied to the design of power amplifiers for various wireless communication systems such as wireless power transfer, radio jamming device and high power transmitter.

Class-D Amplifier using 0.35um BCD process (0.35um BCD공정을 사용한 Class-D Amplifier)

  • Han, Sang-Jin;Hwang, Seung-Hyun;Park, Shi-Hong
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.271-273
    • /
    • 2007
  • 본 논문에서는 TV나 Audio등에 사용되는 2채널 30W급 Class-D amplifier를 동부하이텍의 0.35um BD350BA 공정을 사용하여 디지털 방식의 Class-D amplifier 출력단 구동에 적합하도록 설계하였다. 출력단은 Bootstrap 전원을 사용한 N-N type의 30V LDMOS 내장형이며 각각 $250m{\Omega}$의 턴 온 저항을 갖게 설계 되었다. THD+N 특성개선을 위한 Dead time 및 Delay 조정회로를 내장하였으며 보호회로로는 Over current, Over temperature, UVLO 가 있다.

  • PDF

Research on PAE of CMOS Class-E Power Amplifier For Multiple Antenna System (다중 안테나 시스템을 위한 CMOS Class-E 전력증폭기의 효율 개선에 관한 연구)

  • Kim, Hyoung-Jun;Joo, Jin-Hee;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.12
    • /
    • pp.1-6
    • /
    • 2008
  • In this paper, bias control circuit structure have been employed to improve the power added efficiency of the CMOS class-E power amplifier on low input power level. The gate and drain bias voltage has been controlled with the envelope of the input RF signal. The proposed CMOS class-E power amplifier using bias controlled circuit has been improved the PAE on low output power level. The operating frequency is 2.14GHz and the output power is 22dBm to 25dBm. In addition to, it has been evident that the designed the structure has showed more than a 80% increase in PAE for flatness over all input power level, respectively.

Low-Power and High-Efficiency Class-D Audio Amplifier Using Composite Interpolation Filter for Digital Modulators

  • Kang, Minchul;Kim, Hyungchul;Gu, Jehyeon;Lim, Wonseob;Ham, Junghyun;Jung, Hearyun;Yang, Youngoo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.109-116
    • /
    • 2014
  • This paper presents a high-efficiency digital class-D audio amplifier using a composite interpolation filter for portable audio devices. The proposed audio amplifier is composed of an interpolation filter, a delta-sigma modulator, and a class-D output stage. To reduce power consumption, the designed interpolation filter has an optimized composite structure that uses a direct-form symmetric and Lagrange FIR filters. Compared to the filters with homogeneous structures, the hardware cost and complexity are reduced by about half by the optimization. The coefficients of the digital delta-sigma modulator are also optimized for low power consumption. The class-D output stage has gate driver circuits to reduce shoot-through current. The implemented class-D audio amplifier exhibited a high efficiency of 87.8 % with an output power of 57 mW at a load impedance of $16{\Omega}$ and a power supply voltage of 1.8 V. An outstanding signal-to-noise ratio of 90 dB and a total harmonic distortion plus noise of 0.03 % are achieved for a single-tone input signal with a frequency of 1 kHz.

Wireless Energy Transmission High-Efficiency DC-AC Converter Using High-Gain High-Efficiency Two-Stage Class-E Power Amplifier

  • Choi, Jae-Won;Seo, Chul-Hun
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.3
    • /
    • pp.161-165
    • /
    • 2011
  • In this paper, a high-efficiency DC-AC converter is used for wireless energy transmission. The DC-AC convertter is implemented by combining the oscillator and power amplifier. Given that the conversion efficiency of a DC-AC converter is strongly affected by the efficiency of the power amplifier, a high-efficiency power amplifier is implemented using a class-E amplifier structure. Also, because of the low output power of the oscillator connected to the input stage of the power amplifier, a high-gain two-stage power amplifier using a drive amplifier is used to realize a high-output power DC-AC converter. The high-efficiency DC-AC converter is realized by connecting the oscillator to the input stage of the high-gain high-efficiency two-stage class-E power amplifier. The output power and the conversion efficiency of the DC-AC converter are 40.83 dBm and 87.32 %, respectively, at an operation frequency of 13.56 MHz.