• Title/Summary/Keyword: Clamping PCR

Search Result 10, Processing Time 0.028 seconds

Development of Clamping Probe for Rare DNA Detection using Universal Primers

  • Kim, Meyong Il;Lee, Ki-Young;Cho, Sang-Man
    • Fisheries and Aquatic Sciences
    • /
    • v.17 no.3
    • /
    • pp.339-344
    • /
    • 2014
  • PCR amplification with universal primer is a useful tool for speciation of symbionts in marine eukaryote coupled with robust separation method such as denaturing high performance chromatography (DHPLC). To overcome the biased amplification, clamping PCR is recommended to suppress the amplification of host gene. In this study, we evaluated the efficiency of rare gene detection for two kinds of clamping probes which were successfully utilized for eukaryotic symbiont analysis: C3 linked nucleotide (C3) and peptide nucleic acid (PNA). PNA was 3-4 orders of magnitude higher than that of C3 tested in clamping efficiency and rare gene detection. This represented that PNA could be a more competent clamping probe for the enhancement of PCR amplification for rare symbiont genes.

PNA-mediated Real-Time PCR Clamping for Detection of EGFR Mutations

  • Choi, Jae-Jin;Cho, Min-Hey;Oh, Mi-Ae;Kim, Hyun-Sun;Kil, Min-Seock;Park, Hee-Kyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3525-3529
    • /
    • 2010
  • Tyrosine kinase inhibitors (TKIs) are currently used in the treatment of patients with advanced lung cancer. Recent studies on non-small cell lung cancer have shown that some patients carry somatic mutations in the epidermal growth factor receptor (EGFR) gene. Such mutations correlate with the effectiveness of certain TKIs. To detect a small amount of mutant EGFR among an abundance of wild-type EGFR, we have developed a highly sensitive and simple method using PNA-mediated real-time PCR clamping. The PNA-mediated real-time PCR clamping enables detection of EGFR mutants down to approximately 1% mutant -to- wild type. The total assay time was short as it required only 2.0 hr. Thus, PNA-mediated real-time PCR clamping can easily be applied to clinical samples for identification of DNA carrying EGFR mutations and also appear to be the best assay to detect somatic mutations.

Comparative Analysis of Peptide Nucleic Acid (PNA)-Mediated Real-Time PCR Clamping and DNA Direct Sequencing for EGFR Mutation Detection (EGFR 돌연변이 검출에 있어 PNA-Mediated Real-Time PCR Clamping과 직접 염기서열 분석법의 비교 분석)

  • Kim, Hee-Joung;Kim, Wan-Seop;Shin, Kyeong-Cheol;Lee, Gwan-Ho;Kim, Mi-Jin;Lee, Jeong-Eun;Song, Kyu-Sang;Kim, Sun-Young;Lee, Kye-Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.70 no.1
    • /
    • pp.21-27
    • /
    • 2011
  • Background: Although the gold standard method for research trials on epidermal growth factor receptor (EGFR) mutations has been direct sequencing, this approach has the limitations of low sensitivity and of being time-consuming. Peptide nucleic acid (PNA)-mediated polymerase chain reaction (PCR) clamping is known to be a more sensitive detection tool. The aim of this study was to compare the detection rate of $EGFR$ mutation and EGFR-tyrosine kinase inhibitor (TKI) responsiveness according to $EGFR$ mutation status using both methodologies. Methods: Clinical specimens from 112 NSCLC patients were analyzed for $EGFR$ mutations in exons 18, 19, 20, and 21. All clinical data and tumor specimens were obtained from 3 university hospitals in Korea. After genomic DNA was extracted from paraffin-embedded tissue specimens, both PNA-mediated PCR clamping and direct-sequencing were performed. The results and clinical response to $EGFR$-TKIs were compared. Results: Sequencing revealed a total of 35 (22.9%) mutations: 8 missense mutations in exon 21 and 26 deletion mutations in exon 19. PNA-mediated PCR clamping showed the presence of genomic alterations in 45 (28.3%) samples, including the 32 identified by sequencing plus 13 additional samples (6 in exon 19 and 7 in exon 21). Conclusion: PNA-mediated PCR clamping is simple and rapid, as well as a more sensitive method for screening of genomic alterations in $EGFR$ gene compared to direct sequencing. This data suggests that PNA-mediated PCR clamping should be implemented as a useful screening tool for detection of $EGFR$ mutations in clinical setting.

PNA-Mediated PCR Clamping for the Detection of EGFR Mutations in Non-Small Cell Lung Cancer (비소세포폐암에서 PNA-Mediated PCR Clamping을 이용한 EGFR 돌연변이 분석법)

  • Lee, Kye-Young;Kim, Hee-Joung;Kim, Sun-Jong;Yoo, Gwang-Ha;Kim, Won-Dong;Oh, Seo-Young;Kim, Wan-Seop
    • Tuberculosis and Respiratory Diseases
    • /
    • v.69 no.4
    • /
    • pp.271-278
    • /
    • 2010
  • Background: Recent studies have demonstrated that the epidermal growth factor receptor (EGFR) genotype is the most important predictive marker to EGFR-tyrosine kinase inhibitors (TKIs) and first-line gefitinib treatment will be approved in the near future for use in non-small cell lung cancer (NSCLC) patients with the EGFR mutation. Direct sequencing is known to be the standard for detecting EGFR mutations; however, it has limited sensitivity. Peptide nucleic acids (PNA)-mediated PCR clamping method is a newly introduced method for analyzing EGFR mutations with increased sensitivity and stability. Methods: A total of 71 NSCLC patients were analyzed for EGFR mutations using the PNA-mediated PCR clamping technique. Sixty-nine patients were analyzed for clinicopathologic correlation with EGFR genotype; 2 patients with indeterminate results were excluded. In order to determine EGFR-TKI drug response, 57 patients (42 gefitinib, 15 erlotinib) were included in the analysis. Results: The EGFR mutation rate was 47.8%. Being female, a non-smoker, and having adenocarcinoma were favorable clinicopathologic factors, as expected. However, more than a few smokers (33.3%), male (28.1%), and patients with non-adenocarcinoma (28.6%) had the EGFR mutation. Having a combination of favorable clinicopathologic factors did not increase the EGFR mutation rate significantly. Drug response to EGFR-TKIs showed significant differences depending on the EGFR genotype; ORR was 14.3% for wild type vs 69.0% for mutant type; DCR is 28.6% for wild type vs 96.6% for mutant type. The median EGFR-TKI treatment duration is 7.6 months for mutant type group and 1.4 months for wild type group. Conclusion: EGFR genotype determined using the PNA-mediated PCR clamping method is significantly correlated with the clinical EGFR-TKI responses and PNA-mediated PCR.

Epidermal growth factor receptor overexpression and K-ras mutation detection in the oral squamous cell carcinoma (구강편평상피암종에서 상피성장인자 수용체의 과발현과 K-ras 유전자 변이)

  • Moon, Byeong-Chool;Han, Se-Jin;Jeong, Dong-Jun;Kim, Kyung-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.37 no.5
    • /
    • pp.396-402
    • /
    • 2011
  • Introduction: Epidermal growth factor is a single-chain polypeptide consisting of 53 amino acids with potent mitogenic activity that stimulates the proliferation of a range of normal and neoplastic cells through an interaction with its specific receptor (epidermal growth factor receptor, EGFR). This interaction plays a key role in tumor progression including the induction of tumor cell proliferation. An increased EGFR copy number have been associated with a favorable response to EGFR tyrosine kinase inhibitors therapy. In contrast, K-ras mutations tend to predict a poor response to such therapy. The aim of this study was to determine the correlation between the clinicopathological factors and the up-regulation of EGFR expression and Kras mutations in oral squamous cell carcinoma. Materials and Methods: This study examined the immunohistochemical staining of EGFR, K-ras mutation detection with peptide nucleic acid (PNA)-based real-time polymerase chain reaction (PCR) clamping in 20 specimens from 20 patients with oral squamous cell carcinoma. Results: 1. In the immunohistochemical study of poorly differentiated and invasive oral squamous cell carcinoma, a high level of EGFR staining was observed. The correlation between immunohistochemical EGFR expression and histological differentiation, as well as the tumor size of the specimens was significant (Pearson correlation analysis, significance [r] >0.5, P<0.05). 2. In PNA-based real-time PCR clamping analysis, a K-ras mutation was not detected in all specimens. Conclusion: These findings suggest that the up-regulation of the EGFR may play a role in the progression and invasion of oral squamous cell carcinoma that is, independent of a K-ras mutation.

Initial Diagnosis of Acute Renal Failure Induced by Ischemia in Miniature Pig (미니돼지에서 허혈성 신장 손상의 조기진단)

  • Kim, Se-Eun;Ko, A-Ra;Bae, Chun-Sik;Park, Soo-Hyun;Han, Ho-Jae;Shim, Kyung-Mi;Kang, Seong-Soo
    • Journal of Veterinary Clinics
    • /
    • v.28 no.1
    • /
    • pp.52-56
    • /
    • 2011
  • Acute renal injury induced by ischemia is a major cause of high morbidity and mortality in hospitalized patients and a common complication in hospitalized patients. Thus, the work with acute renal failure and renal ischemia has been studied for many years. Although serum creatinine concentration that is widely used as an index of renal function performs fairly well for estimating kidney function in patients with stable chronic kidney disease, it performs poorly in the setting of acute disease. Thus, an ideal biomarker for acute kidney injury would help clinicians and scientists diagnose the most common form of acute kidney injury in hospitalized patients, acute tubular necrosis, early and accurately, and may aid to risk-stratify patients with acute kidney injury by predicting the need for renal replacement therapy, the duration of acute kidney injury, the length of stay and mortality. In this study, renal ischemia and reperfusion were performed by clapming and un-clamping right renal artery in miniature pigs. Plasma blood urea nitrogen (BUN) and creatinine were examined at pre- clamping, after-clamping at 0, 1 and 3 hours. And we searched initial indicators in these samples. Also, renal tissue was collected and searched the initial indicator by PCR and western blotting. As a result, hypoxia inducible factor $1{\alpha}$ ($HIF1{\alpha}$), nuclear factor kappa-B ($NF{\kappa}B$), $I{\kappa}B$, erythropoietin (EPO), erythropoietin receptor (EPOR), angiopoietin-1 and vascular endothelial growth factor (VEGF) were showed significant changes among the renal protein. $HIF1{\alpha}$, EPO, and EPOR were showed significant changes among the renal gene. Thus, these markers will be used as initial diagnosis of acute renal failure.

Differential Expression of Four $Ca_v$3.1 Splice Variants in the Repeat III-IV Loop

  • Lee, Sang-Soo;Park, You-Mi;Kang, Ho-Won;Bang, Hyo-Weon;Jeong, Seong-Woo;Lee, Jung-Ha
    • Animal cells and systems
    • /
    • v.12 no.3
    • /
    • pp.137-141
    • /
    • 2008
  • Molecular cloning revealed the three isoforms($Ca_v3.1,\;Ca_v3.2,\;and\;Ca_v3.3$) of the T-type calcium channel subfamily. Expression studies exhibited their distinctive electrophysiological and pharmacological properties, accounting for diverse properties of T-type calcium channel currents previously characterized from isolated cells. However, electrophysiological properties of ion channels have shown to be more diversified by their splice variants. We here searched splice variants of rat $Ca_v3.1$ T-type channel by reverse-transcription-polymerase chain reaction(RT-PCR) to further explore diversity of $Ca_v3.1$. Interestingly, analyses of cloned RT-PCR products displayed that there were at least four splicing variants of rat $Ca_v3.1$ in the loop connecting repeats III and IV. Southern blot analyses indicated that the predominantly detected variant in brain was $Ca_v3.1a$(492 bp), which were rarely detected in most of peripheral tissues. Other two variants($Ca_v3.1c$, 546 bp; $Ca_v3.1d$, 525 bp) were detected in most of the tissues examined. The smallest isoform($Ca_v3.1b$, 471 bp) was rarely detected all the tissues. Electrophysiological characterization of the splicing variants indicated that the splice variants differ in inactivation kinetics and the voltage dependence of activation and inactivation as well.

Effect of the Inhibition of Phospholipase $A_2$ in Generation of Free Radicals in Intestinal Ischemia/Reperfusion Induced Acute Lung Injury

  • Lee, Young-Man;Park, Yoon-Yub;Kim, Teo-An;Cho, Hyun-G.;Lee, Yoon-Jeong;Repine, John E.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.3
    • /
    • pp.263-273
    • /
    • 1999
  • The role of phospholipase $A_2\;(PLA_2)$ in acute lung leak induced by intestinal ischemia was investigated in association with neutrophilic respiratory burst. To induce lung leak, we generated intestinal ischemia for 60 min prior to the 120 min reperfusion by clamping superior mesenteric artery in Sprague-Dawley rats. Acute lung leak was confirmed by the increased lung leak index and protein content in bronchoalveolar fluid. These changes were inhibited by mepacrine, the non-specific $PLA_2$ inhibitor. The lung myeloperoxidase (MPO) activity denoting the pulmonary recruitment of neutrophils was increased by intestinal I/R, but decreased by mepacrine. Simultaneously, the number of leukocytes in bronchoalveolar fluid was increased by intestinal ischemia/reperfusion (I/R) and decreased by mepacrine. Gamma glutamyl transferase activity, an index of oxidative stress in the lung, was increased after intestinal I/R but decreased by mepacrine, which implicates that $PLA_2$ increases oxidative stress caused by intestinal I/R. The $PLA_2$ activity was increased after intestinal I/R not only in the intestine but also in the lung. These changes were diminished by mepacrine. In the cytochemical electron microscopy to detect hydrogen peroxide, intestinal I/R increased the generation of the hydrogen peroxide in the lung as well as in the intestine. Expression of interleukin-1 (IL-1) in the lung was investigated through RT-PCR. The expression of IL-1 after intestinal I/R was enhanced, and again, the inhibition of $PLA_2$ suppressed the expression of IL-1 in the lung. Taken together, intestinal I/R seems to induce acute lung leak through the activation of $PLA_2$, the increase of IL-1 expression associated with increased oxidative stress by neutrophilic respiratory burst.

  • PDF

Alteration of Growth Factor Expression after Acute Ischemic Renal Injury (급성 허혈성 신손상 후 여러 성장인자 발현의 변화)

  • Koe, Yang Sim;Lee, Soo Yeon;Kim, Won;Cho, Soo Chul;Hwang, Pyoung Han;Kim, Jung Soo;Lee, Dae-Yeol
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.7
    • /
    • pp.687-694
    • /
    • 2003
  • Purpose : Regeneration and repair after ischemic renal injury appears to be modulated by circulating or locally produced growth factors. This study examined the changes of serum insulin like growth factor(IGF-I) and renal expression of IGF-I and II, vascular endothelial growth factor(VEGF), transforming growth $factor-{\beta}$($TGF-{\beta}$), and connective tissue growth factor(CTGF) during the active regeneration period after acute ischemic injury. Methods : Sera and kidney tissue samples(whole kidney, cortex, outer medullae and inner medullae) were obtained before and after one, three, five and seven days of 40 minutes bilateral renal pedicle clamping. Acute renal failure was assessed by measuring the concentration of serum creatinine. Serum IGF-I level was measured by radioimmunoassay. The mRNA expression in kidney was measured by RT-PCR. The distribution of IGF-I and CTGF was detected by immunohistochemistry. Resuts : Serum IGF-I concentration after one day following acute ischemic renal injury was significantly decreased compared to preischemic value. The mRNA levels of IGF-I, IGF-II, $TGF-{\beta}1$ and VEGF in whole kidney were temporally decreased on day one of ischemic injury. IGF-I and IGF-II expressions in outer medullae were significantly decreased on day one after ischemic injury. $TGF-{\beta}1$, CTGF and VEGF expressions were markedly decreased in medullae after one day of ischemic injury compared to other kidney sections. IGF-I was markedly decreased in cortical tubules on day one of uremic rat. CTGF was markedly increased on tubule within three days of ischemic injury. Conclusion : These findings suggest that IGFs, $TGF-{\beta}1$ and CTGF may involve in the pathogenesis or the recovery from acute ischemic renal injury.