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Abstract
PCR amplification with universal primer is a useful tool for speciation of symbionts in marine eukaryote coupled with robust sepa-
ration method such as denaturing high performance chromatography (DHPLC). To overcome the biased amplification, clamping 
PCR is recommended to suppress the amplification of host gene. In this study, we evaluated the efficiency of rare gene detection 
for two kinds of clamping probes which were successfully utilized for eukaryotic symbiont analysis: C3 linked nucleotide (C3) 
and peptide nucleic acid (PNA). PNA was 3-4 orders of magnitude higher than that of C3 tested in clamping efficiency and rare 
gene detection. This represented that PNA could be a more competent clamping probe for the enhancement of PCR amplification 
for rare symbiont genes.
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Introduction

Use of universal primer targeted conserved regions in small 
subunit ribosomal RNA (SSU rRNA) gene has been utilized as 
a useful tool for identifying species and amplifying unknown 
functional gene (Pineau et al., 2004) as well. In 1989, Bott-
ger (1989) first demonstrated that a portion of the 16S rRNA 
gene from Legjonella pneumophila, Escherichia coli or My-
cobacterium tuberculosis can be amplified by using one set of 
universal PCR primers and then sequenced to identify these 
bacteria. Several targets are available for each taxonomy now 
using 16S rDNA for bacteria (Baker et al., 2003; Tian et al., 
2005), 18S rDNA for eukaryote (Blankenship and Yayanos, 
2005), 23S rDNA for marine algae and cyanobacteria (Sher-
wood and Presting, 2007), and 28S rDNA and ITS for fungi 
(Mohlenhoff et al., 2001; Iwen et al., 2002). In spite of conve-
nience of the universal primer with ease of application to most 
species, separation of the amplicons from unknown sample 

mostly relied on a special treatment such as restriction enzyme 
(Lin et al., 2004) and denaturing high performance liquid 
chromatograph (DHPLC) (Troedsson et al., 2008a; Troedsson 
et al., 2008b). Universal primer, however, have a drawback 
such as underestimation of rare parasites in parasitic diagno-
sis because of a biased amplification of dominant gene (Bass 
and Cavalier-Smith, 2004). To overcome this obstacle, PCR 
amplification of dominant gene is intentionally suppressed 
by clamping probes such as the peptide nucleic acids (PNAs) 
(Troedsson et al., 2008b), locked nucleic acids (LNAs) (Kark-
are and Bhatnagar, 2006) and C3 oligonucleotide (Vestheim 
and Jarman, 2008) and GC clamp (Jury et al., 2007). 

PNA is an oligonucleotide analogue with polyamide back-
bone. Because of strong binding with DNA, this mimic DNA 
has been exploited to produce powerful bimolecular tools, 
antisense and antigene agents, molecular probes and biosen-
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rea): BC18S-1361F-PNA, H-GGT GTC CAG TTC GCA 
G-NH2 for blue crab, PP-1417F-PNA, Lys-CCG TTC GAC 
ACA GTC T-NH2 for grass shrimp, respectively.

Clamping efficiency

To investigate the variation of clamping efficiency depend-
ing on clamping probe concentration, clamping-PCR was per-
formed, with varying concentration (0 - 2 μM) of each probes, 
by a set of universal primer: Univ18s-1131F (5´-AAA CTY 
AAAGRA ATT GAC CC-3´) (Troedsson et al., 2008a) and 
Univ18s-1629R (5´-GAC GGG CGG TGT GTR C-3´) (Grue-
bl et al., 2002). The twenty μl of PCR reaction mix was con-
stituted by 1X DiscoveraseTM PCR buffer (Invitrogen), 0.3U 
of DiscoveraseTM DNA Polymerase (Invitrogen), 0.5 μM of 
each Primer, varying concentration of clamping probe, 200 
μM of dNTP, 2 mM of MgSO4 and 2 μl of templates. Thermal 
cycling condition was set as: 30 s at 94˚C; 25 cycles of 30s at 
94˚C, 30s at clamping probe’s annealing temperature, 30s at 
54˚C, 30s at 68˚C; and finally 5min at 68˚C. The annealing 
temperature for clamping probe was set to 66˚C for PNA and 
48˚C for C3 in blue crab, 65˚C and 46.4˚C for grass shrimp, 
respectively. All clamping-PCR were carried out in these con-
ditions. After clamping-PCR, PCR products were applied to 
DHPLC to quantify the amplicon concentration.

Clamping efficiency of each type of probe was investigated 
using serially diluted plasmid DNAs as templates (108 -103 
copies). For this, each clamping-PCR were performed with 
previously described mixture adding 1 μM of clamping probe. 
The amplicons were eluted on 1.5% agarose gel. 

Detection of rare gene by DHPLC

To investigate the competency of rare gene detection, 
clamping-PCR was carried out to amplify the rare gene with 
clamping the amplification of dominant gene with clamping 
probe. A 3 by 7 factorial matrix mixture was used as a tem-
plate. For detection of rare gene, PCR amplicon was further 
separated by DNASep HT Cartridge (Transgenomic, Omaha, 
NE) with linear gradient elution of WAVE® Optimized Buf-
fers. Separation condition was tested by varying oven tem-
perature and buffer B% (Troedsson et al., 2008a; Cho et al., 
Unpublished) and for 10 min. Chromatographic analysis was 
carried out by HSX-3500 fluorescence detector (Ex = 495 
nm and Em = 537 nm) after SYBR Gold staining (Molecular 
Probe Inc.) with Navigator software version 1.6.2 (build 12) 
(Transgenomic, Omaha, NE). 

Statistical analysis

All data given in mean value and standard deviation from, at 
least, duplicate data. The significance of clamping efficiency 
depending on probe concentration was analyzed by analysis of 
variance (ANOVA) and tukey’s test for post-hoc test for mean 

sors (Nielsen and Egholm, 1999). Since PNA cannot extended 
by the polymerase, PNA has been also successfully utilized 
for clamping PCR amplification in mutation detection (Orum, 
2000), and parasite detection (Troedsson et al., 2008b). 

Recently, Vestheim and Jarman (2008) has proposed that a 
3’-modified oligonucleotide, C3 spacer, can also be a useful 
clamping probe for PCR amplification of dominant gene. In-
serted propyl group cannot be recognized by polymerase and 
thus isn’t accessible for further reactions. C3 is a cost-effec-
tive nucleotide. Comparing to PNA, C3 is much cheaper and 
relatively easy to synthesize. If C3 has a competitive clamping 
efficiency for dominant gene to PNA, it is favorable to use as 
a clamping probe for DHPLC assay. 

Therefore, two different clamping probes were tested with 
same sequence, C3 spacer and PNA, in terms of clamping ef-
ficiency of dominant gene and enhancement of PCR amplifi-
cation of rare genes using two distinct model assays, blue crab 
and grass shrimp.

Materials and Methods

Model systems

A blue crab model (CS model), Callinectes sapidus coupled 
with dinoflagate parasite, Hematodinium sp. and grass shrimp 
model (PP model), Palaemonetes pugio, coupled with trema-
tode, Microphallus turgidus, and bopyrid isopoda, Probopyrus 
pandalicola, were applied for the test, respectively. From each 
animal, nearly-full-length 18S rRNA was PCR amplified by 
universal primer set: UnivF-15 (5´-CTG CCA GTA GTC ATA 
TGC-3´) (Frishcher et al., 2002) and UnivR-1765 (5´-ACC 
TTG TTA CGA CTT TAC-3´) (Firscher et al., 2000; Troeds-
son et al., 2008b). For standard templates of the model, puri-
fied plasmid DNAs were prepared by transforming the PCR 
amplicon into plasmid vector pCRTM 4-TOPO (Invitrogen, 
Carlsbad, CA, USA) and then purified using High Pure plas-
mid isolation kit (Roche, Mannheim, Germany). This plasmid 
DNAs were used as templates for all PCR reactions.

Clamping probe design

The clamping probe was designed to prime onto antisense 
strand of the target gene and to prevent elongation of forward 
PCR primer. To avoid the any false priming to its parasitic 
gene fragment and primer dimer with PCR primers, candi-
date of probe sequence were analyzed by Primer premiere 
5.0 (Premier Biosoft International, Palo Alto, CA, USA). C3 
spacer was synthesized from Integrated DNA Technologies 
(Coralville, IA, USA): BC-1361F-C3, 5´- GGT GTC CAG 
TTC GCA G/C3SP/-3´ for blue crab, C. sapidus; PP-1417F-
C3, 5´- CCG TTC GAC ACA GTC T/C3SP/-3´ for grass 
shrimp, P. pugio. After qualitative confirmation with C3 
probe, PNA was synthesized from Panagene (Daejeon, Ko-
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Results

To quantitatively estimate the clamping efficiency for each 
type of clamping probe, serially diluted plasmid DNAs were 
applied to clamping PCR with/without 1 μM of clamping 
probe. In CS model, PNA completely blocked amplification 
of target amplicon up to 106 copies of template, which were 5 
orders of magnitude than PCR amplification without clamping 
probe. In other hand, C3 rarely showed clamping efficiency. 
In PP model, up to 105 copies, PNA completely blocked and 
even slightly in 108 and 107 copies, band intensity of target 
amplicon was significantly smaller than those of none clamp-
ing probe PCR condition and C3 amplification (Fig. 1). The 
clamping efficiency of PNA was always superior to C3 spacer 
by more than 3 orders magnitude. 

Optimal concentration for clamping probe was tested 
by varying concentration of clamping probes from 0 μM to 
2 μM. PCR amplicons were further injected to DHPLC to 
quantify the amount of target amplicons in response to probe 
concentration. With increase of clamping probe, amplifica-
tion of target-amplicon was obviously suppressed in both two 
model system (P<0.001) (Fig. 2) with exponential decrease 
(r2=0.9352, F=73.1739 and P=0.0010). At 2 μM, amplifica-
tion of target amplicon was significantly reduced by 85% for 
CS model and 66% for PP model, respectively. 

Optimization of dHPLC assay was carried out with varying 
buffer B% and oven temperature conditions. For CS model, 
separation was optimized at 59.5˚C of oven temperature and 
60-70% of linear gradient buffer B at 3.5 mL/min of flow rate 
(Troedsson et al., 2008a) while, for PP model, 57.5˚C and 
62-68% at 0.45 mL/min (Cho, 2012). Retention time of each 
host and parasite peaks were highly reproducible (Fig. 3). WE 
applied these assay for further separation of PCR amplicons 
from pDNA mixture to measure the enhancement of rare gene 
amplification.

Detection of rare gene was highly improved by clamping-
PCR, especially by PNA- clamping PCR. In CS model, the 
parasite, Hematodinium sp. was detected up to 1:106 ratios, 
which were 5 orders magnitude higher than non-clamping 

difference. Nonlinear regression analysis was also carried out 
for amount of target-amplicon from varying concentration of 
clamping probe. All statistical analyses were performed by 
statistical software, Sigmastat 3.11 (Systat Software, Inc.).

Fig. 1. Clamping efficiency of PNA and C3. Bloking efficiency of each probe was tested by serial diluted plasmid DNA of each target 18S rRNA gene. PNA 
showed 3-4 order magnitude reduction of amplification in comparison with C3. 
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PNA
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None
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Fig. 2. Changes in amount of target-amplicons in response to different 
concentration of clamping probe. (A) Blue crab (CS) model and (B) Grass 
shrimp (PP) model with PNA. Bar=standard deviation. Amount of target-
amplicon was significantly decreased in response to increase of clamping 
probe concentration after 25 cycles of clamping-PCR amplification 
(r2=0.9352, F=73.1739 and P=0.0010 for CS model; r2=0.9414, F=81.3607 
and P=0.0008 for PP model). Amount of amplicon was quantified using 
peak height by 5 μL injection to DHPLC.
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(DHPLC) has been utilized as a new diagnostic technique for 
detecting parasitism in marine eukaryotic organism (Troeds-
son et al., 2008a; Troedsson et al., 2008b). The potential of 
this new technology is now expanding its application for ma-
rine biology and ecology. PCR-based DHPLC assay has been 
turned out a versatile and efficient model for detecting low 
ranged parasites and , with universal primers targeted highly 
conserved region, successfully utilized to investigate the sym-
biont composition in 18s rRNA for eukaryotes (Schmidt and 
Relman, 1994) and 16s rRNA for bacteria (Amann and Lud-
wig, 2000). To achieve the amplification of rare parasitic gene, 
however, it is necessary to suppress the amplification of the 
dominant host gene to avoid a biased PCR amplification of the 
dominant host gene.

 C3 (Dames et al., 2007; Vestheim and Jarman, 2008) and 
PNA (Orum, 2000; Shakeel et al., 2006; Troedsson et al., 
2008b) have been used as effective clamping probes and fur-
ther enhancer of PCR amplification of rare gene. The clamp-
ing efficiency of PNA was obviously superior to C3 spacer by 
2-3 orders of magnitude (Fig. 1). PNA has a strong binding 
independent of salt concentration and also greater specific-
ity in binding to complementary DNA (Demidov and Frank-
Kamenetskii, 2004). This high specificity and strong binding 
may facilitate strong hybridization on intra-strand of target 
DNA and prevent polymerase to displace the PNA molecules 
from the template (Shakeel et al., 2006). 

In this study, the extension temperature (68˚C) is much 
higher than annealing temperature of any C3 probes. During 
extension, the polymerase may displace C3 probe from the 
template, and then extend towards completion of the reaction 
(Shakeel et al., 2006). When the binding position of clamping 
probe is closer to PCR primer, the DNA/DNA binding activ-
ity may be relatively stronger than further one before thermal 
cycling temperature stabilized.

PCR and 2 orders magnitude than C3-clamping PCR. In PP 
model, PNA-clamping PCR was effective up to 1:104 ratios 
for detection of rare gene, which was 4 orders magnitude bet-
ter than non-clamping PCR and 3 orders magnitude than C3-
clamping PCR. In all model, PNA-clamping PCR was supe-
rior to C3-clamping PCR for detection of rare gene (Table 1). 

Discussion

In aquatic ecosystem, animals are always exposed to rela-
tively large biomass of parasitesand co-existent with diverse 
symbionts in various ways (Kuris et al., 2008). Except epi-
demic case, detection of unknown symbionts is highly time- 
and cost-consuming work because of their rare intensities. Re-
cently, denaturing high-performance liquid chromatography 

Fig. 3. Optimization of DHPLC assay for two distinct model assays for rare gene detection. (A) blue crab, (B) grass shrimp. 1: Hematodinium sp., 2: 
Callinectes sapidus, 3: Microphallus turgidus, 4: Palaemonetes pugio, and 5: Probopyrus  pandalicola. 
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Table 1. Detection of rare gene (%) with clamping probes in multi tem-
plate plasmid DNA mixtures by PNA-PCR, C3-PCR and PCR coupled with 
DHPLC assay

Ratio1 n2
CS3 PP4

PNA C3 None PNA C3 None

1:101 3 100 100 100 100 100 33
1:102 3 100 100 0 100 0 0
1:103 3 100 100 0 66 0 0
1:104 3 100 33 0 66 0 0
1:105 3 100 0 0 0 0 0
1:106 3 66 0 0 0 0 0
1:107 1 0 0 0 0 0 0

1Ratio between parasite and host in gene copy numbers. 2Number of 
independent assays in 8 by 3 factorial experiments. 3Callinectes sapidus. 
4Palaemonetes pugio.
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to understand the interaction between environment contami-
nation and parasitic epidemics in aquatic ecosystem (Lafferty 
and Kuris, 1999; Kim et al., 2008). Detection or discovery 
of parasitism is probably a crucial prerequisite condition to 
understand the impact of environmental stress on aquatic eco-
system. During the past decades, noticeably developed diag-
nostic techniques have enabled detection and quantification 
of a variety of parasites, parasitoids and pathogens including 
molecular diagnosis (Lightner and Redman, 1998; Cunning-
ham, 2002; Mothershed and Whitney, 2006; Thakur et al., 
2008). DHPLC is also one of those versatile and competent 
tools for monitoring parasitic/symbiont composition. In order 
to facilitate the detection of rare symbiont gene, clamping-
PCR is a promised tool to overcome the biased amplification 
of PCR amplification. Therefore, PNA can be the most useful 
and prominent tool for clamping-PCR over its high price and 
complexity of synthesis.
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