• Title/Summary/Keyword: Clamp Circuit

Search Result 143, Processing Time 0.018 seconds

High Efficiency Coupled Inductor Boost DC-DC Converter using a Simple Clamp Circuit (간단한 클램프회로를 이용한 고효율 결합인덕터 부스트 직류-직류 변환기)

  • Yoo, Doo-Hee;Jeong, Gang-Youl
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.3
    • /
    • pp.31-39
    • /
    • 2012
  • This paper presents a high efficiency coupled inductor boost DC-DC converter that uses a simple clamp circuit and the coupled inductor and thus overcomes output voltage limit of the conventional boost converter. The proposed converter solves problems of voltage stress of the power semiconductor switch and reverse recovery of the output diode using a simple clamp circuit composed of a diode and a capacitor, and thus the converter improves its total efficiency. In this paper, the operational principle of the proposed converter is explained by each mode and then a design example for the prototype converter based on the explanation is shown. And good performance of the proposed converter is verified through experimental results of the prototype converter that is implemented with the designed circuit parameters.

A New Controllable Active Clamp Algorithm for Switching Loss Reduction in a Module Integrated Converter System

  • Park, Chang-Seok;Jung, Tae-Uk
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.465-471
    • /
    • 2014
  • This paper proposes a new switching algorithm for an active clamp snubber to improve the efficiency of a module integrated converter system. This system uses an active clamp method for the snubber circuit for the efficiency and reliability of the system. However, the active clamp snubber circuit has the disadvantage that system efficiency is decreased by switch operating time because of heat loss in resonance between the snubber capacitor and leakage inductance. To address this, this paper proposes a new switching algorithm. The proposed algorithm is a technique to reduce power consumption by reducing the resonance of the snubber switch operation time. Also, the snubber switch is operated at zero voltage switching by turning on the snubber switch before main switch turn-off. Simulation and experimental results are presented to show the validity of the proposed new active clamp control algorithm.

Active-clamp Class-E High Frequency Resonant Inverter with Single-st (단일 전력단으로 구성된 Active-clamp E급 고주파 공진 인버터)

  • Kang, Jin-Wook;Won, Jae-Sun;Kim, Dong-Hee;Ro, Chae-Gyun;Sim, Kwang-Yeal;Le, Bong-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1193-1195
    • /
    • 2002
  • This paper presents Active-clamp Class-E high frequency resonant inverter with single-stage. The proposed circuit is integrated Active-c class-E circuit to boost converter with the funct power factor correction. Boost converter is opera positive and negative half cycle respectively at frequency(60Hz), operating in Discontinuous Con Mode(DCM) of boost converter performs high p factor. By adding active-clamp circuit in Cl inverter, main switch of inverter part is operat only ZVS(Zero Voltage Switch), but also reduce switching voltage stress of main switch. Simulation result using Psim4.1 show that the p prove the validity of theoretical analysis. This proposed inverter will be able to be pract used as a power supply in various fields are ind heating applications, DC-DC converter etc.

  • PDF

A Study On Sing1e-Stage Active-Clamp Type High Frequency Resonant Inverter (단일 전력단 능동 클램프형 고주파 공전 인버터에 관한 연구)

  • 강진욱;원재선;김동희;조규판;김경식
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.287-291
    • /
    • 2002
  • This paper presents active-clamp class-E high frequency resonant inverter with single-stage. The proposed circuit is integrated active-clamp class-E circuit to boost converter with the function of power factor correction. Boost converter is operated in positive and negative half cycle respectively at line frequency(60Hz), Such a operating in discontinuous conduction mode(DCM) of boost converter performs high power factor. By adding active-clamp circuit in class-E inverter, main switch of inverter part is operated not only ZVS(Zero Voltage Switch) but also reduced the switching voltage stress of main switch. This paper shows that simulation result using Psim 4.1 prove the validity of theoretical analysis. This proposed inverter will be able to be practically used as a power supply in various fields as induction heating applications, DC-DC converter etc.

  • PDF

A Study on Quasi Resonant Converter with Low Switching Surge Voltage Characteristics by Applying Auxiliary Winding Type Active Snubber (보조 권선형 능동 스너버를 적용하여 낮은 스위치 서지 전압 특성을 갖는 유사 공진형 컨버터에 관한 연구)

  • Ahn, Tae Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.56-61
    • /
    • 2018
  • In this paper, a new type of active snubber was proposed to lower the excessive rated voltage of the clamp capacitor which was a problem in the conventional circuit by applying auxiliary winding into the active snubber. A simplified equivalent circuit of the proposed snubber was derived by applying it to QR flyback converter, and the equivalent circuits for each switch state was shown under the steady-state condition. In addition, the maximum voltage of the clamp capacitor as well as the main switch was found by using the steady-state equations. In particular, it was found that the clamp capacitor voltage could be controlled by the auxiliary winding ratio. In order to verify the utility and practicality of the proposed converter with auxiliary winding type active snubber circuit, a prototype with an output voltage of 19V and a maximum load current of 6A was produced and the results were reported.

Design of a Latchup-Free ESD Power Clamp for Smart Power ICs

  • Park, Jae-Young;Kim, Dong-Jun;Park, Sang-Gyu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.3
    • /
    • pp.227-231
    • /
    • 2008
  • A latchup-free design based on the lateral diffused MOS (LDMOS) adopting the "Darlington" approaches was designed. The use of Darlington configuration as the trigger circuit results in the reduction of the size of the circuit when compared to the conventional inverter driven RC-triggered MOSFET ESD power clamp circuits. The proposed clamp was fabricated using a $0.35{\mu}m$ 60V BCD (Bipolar CMOS DMOS) process and the performance of the proposed clamp was successfully verified by TLP (Transmission Line Pulsing) measurements.

A Study on the Controllable Snubber for Switching Loss Reduction in Interleaved Fly-Back Converter (인터리브드 플라이 백 컨버터의 스위칭 손실 감소를 위한 제어형 스너버에 관한 연구)

  • Park, Chang-Seok;Jung, Tae-Uk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.5
    • /
    • pp.57-64
    • /
    • 2015
  • This paper proposes a new switching algorithm for an controllable clamp snubber to improve the efficiency of a fly-back converter system. This system uses an controllable clamp method for the snubber circuit for the efficiency and reliability of the system. However, the active clamp snubber circuit has the disadvantage that system efficiency is decreased by switch operating time because of heat loss in resonance between the snubber capacitor and leakage inductance. To address this, this paper proposes a new switching algorithm. The proposed algorithm is a technique to reduce power consumption by reducing the resonance of the snubber switch operation time. Also, the snubber switch is operated at zero voltage switching by turning on the snubber switch before main switch turn-off. Experimental results are presented to show the validity of the proposed controllable clamp control algorithm.

Analysis and Design of High-Power, High-Frequency Charging Circuit using FB-ZVS Converter (FB-ZVS 콘버터를 이용한 대용량.고주파 충전회로의 해석 및 설계)

  • Lee, Ki-Young;Cha, Young-Kil;Jung, Jong-Jin;Kim, Heung-Geun
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.453-457
    • /
    • 1996
  • DC/DC converter is widely used in computer, electronic communication and industrial apparatus where the regulated dc supply is needed. FB-ZVS converter is suitable for high-power, high-frequency and constant frequency control. Because the voltage stress of the diode rectifier is high due to the ring effect, the clamp circuit is essential to reduce the voltage stress. The nondissipative active clamp circuit eliminates ring effect. Analysis of FB-ZVS converter and the validity of the active clamp circuit are studied through the simulation, and the experimental results show the superior characterics of the proposed system.

  • PDF

A Self-Driven Active Clamp Forward Converter Using the Auxiliary Winding of the Power Transformer (변압기 보조권선을 이용한 자기 구동 능동 클램프 포워드 컨버터)

  • 이광운;임범선;김희준
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.5
    • /
    • pp.350-354
    • /
    • 2003
  • This study proposes a new self-driven active clamp forward converter eliminating the extra drive circuit for the active clamp switch. The converter used the auxiliary winding of the power transformer to drive the active clamp switch and a simple R-C circuit to get the dead time between the two switches. The operation principle was presented and experimental results were used to verify theoretical predictions. A 100-W (5V/20A) prototype converter built that only exhibited 1.5-turn winding number in the auxiliary winding was sufficient to drive the active clamp switch on the input of 50V. Finally, the measured efficiency of the converter was presented and the maximum efficiency of 91% was obtained.

A Novel Active Clamp Switching Method To Improve of Efficiency For Photovoltaic MIC (태양광 MIC 시스템의 효율향상을 위한 새로운 Active Clamp 스위칭 기법)

  • Park, Byung-Chul;Park, Ji-Ho;Song, Sung-Geun;Park, Sung-Jun;Shin, Joong-Rin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.477-484
    • /
    • 2013
  • This paper proposes a novel switching method of active clamp snubber for efficiency improvement of PV module integrated converter(MIC) system. Recently, MIC solar system is researched about the efficiency and safety. PV MIC system is used active clamp method of snubber circuit for the price and reliability of the system. But active clamp snubber circuit has the disadvantage that system efficiency is decreased for switch operating time because of heat loss of resonant between snubber capacitor and leakage inductance. To solve this problem, this paper proposes a novel switching method of the active clamp. The proposed method is a technique to reduce power consumption by reducing the resonance of the snubber switch operation time and through simulations and experiments proved the validity.