• Title/Summary/Keyword: Cl Stabilization

Search Result 114, Processing Time 0.036 seconds

Process Optimization for Concentration and Stabilization of Recombinant Endoxylanase Expressed in Bacillus subtilis (Bacillus subtilis에서 발현된 재조합 Endoxylanase 농축과 안정화 공정의 최적화)

  • Choe, Yeong-Rok;Park, Jeong-Ha;;Kim, Yeong-Man;Gwon, Hyeon-Ju;Kim, Byeong-U
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.4
    • /
    • pp.322-327
    • /
    • 2004
  • A strong constitutive PJH promoter from Bacillus sp. was applied to overexpress the endoxylanase gene (639 bp) in Bacillus subtilis. The expression plasmid, pJHKJ4, was designed to contain the $P_{JH}$ promoter and open reading frame of endoxylanase including its own promoter. The plasmid was introduced into B. subtilis DB431 and the resulting transformant was grown on LB glucose medium. At the end of cultivation, the endoxylanase activity in the culture supernatant reached about 140 DIm!. The enzyme in the supernatant was concentrated by ultrafiltration (MW cut-off 10 kDa and 30 kDa) and ammonium sulfate precipitation. For the concentration of the enzyme, ultrafiltration was more efficient than 70% ammonium sulfate precipitation. The stabilization of concentrated enzyme solution at $50^{\circ}C$ was examined with various stabilizers such as NaCI, glycerol, polyethylene glycol, sorbitol, and $CaCI_2$. The most effective stabilizers were found to be NaCI and $CaCI_2$.

Origin of the α-Effect in Nucleophilic Substitution Reactions of Y-Substituted Phenyl Benzoates with Butane-2,3-dione Monoximate and Z-Substituted Phenoxides: Ground-State Destabilization vs. Transition-State Stabilization

  • Kim, Mi-Sun;Min, Se-Won;Seo, Jin-A;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.2913-2917
    • /
    • 2009
  • Second-order rate constants (k$_{Nu–}$) have been measured for nucleophilic substitution reactions of Y-substituted phenyl benzoates (1a-i) with butane-2,3-dione monoximate ($Ox^-\;an\;\alpha$-nucleophile) and Z-substituted phenoxides in 80 mol% H$_2$O/20 mol% DMSO at 25.0${\pm}$0.1$^{\circ}C$. Hammett plots correlated with ${\sigma}^o$ and ${\sigma}^-$ constants for reactions of 1a-h with Ox$^–$ exhibit many scattered points. In contrast, the Yukawa-Tsuno plot results in a good linear correlation with ${\rho}_Y$ = 2.20 and r = 0.45, indicating that expulsion of the leaving group occurs in the rate-determining step (RDS). A stepwise mechanism with expulsion of the leaving-group being the RDS has been excluded, since Y-substituted phenoxides are less basic and better nucleofuges than Ox$^–$. Thus, the reactions have been concluded to proceed through a concerted mechanism. Ox$^–$ is over 10$^2$ times more reactive than its reference nucleophile, 4-chlorophenoxide (4-ClPhO$^–$). One might suggest that stabilization of the transition-state (TS) through intramolecular general acid/base catalysis is responsible for the ${\alpha}$-effect since such general acid/base catalysis is not possible for the corresponding reactions with 4-ClPhO$^–$. However, destabilization of the ground-state (GS) of Ox$^–$ has been concluded to be mainly responsible for the ${\alpha}$-effect found in this study on the basis of the fact that the magnitude of the ${\alpha}$-effect is independent of the nature of the substituent Y.

The effect of osmotic pressure in W/O/W multiple emulsion (다상 에멀전 형성에 있어 삼투 현상이 미치는 영향)

  • 신중진;이근수;강기춘;표형배
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.26 no.1
    • /
    • pp.139-148
    • /
    • 2000
  • The osmotic pressure is a one of the most important factor affecting stabilization of multiple emulsion in a law hours after experiment. To understand and decrease osmotic pressure between Wl phase and W2 phase, a kinds of humectants were introduced in outer water phase. As a result, Betaine and Glucose had an excellent effect reducing osmotic pressure and NaCl made W/O/W emulsion more stable than MgSO4 did when introduced in inner water phase.

  • PDF

The α-Effect in Nucleophilic Substitution Reactions of Y-Substituted-Phenyl X-Substituted-Cinnamates with Butane-2,3-dione Monoximate

  • Kim, Min-Young;Son, Yu-Jin;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2877-2882
    • /
    • 2013
  • Second-order rate constants ($k_{Ox^-}$) have been measured spectrophotometrically for nucleophilic substitution reactions of 4-nitrophenyl X-substituted-cinnamates (7a-7e) and Y-substituted-phenyl cinnamates (8a-8e) with butane-2,3-dione monoximate ($Ox^-$) in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. The Hammett plot for the reactions of 7a-7e consists of two intersecting straight lines while the Yukawa-Tsuno plot exhibits an excellent linearity with ${\rho}_X$=0.85 and r=0.58, indicating that the nonlinear Hammett plot is not due to a change in the rate-determining step but is caused by resonance stabilization of the ground state (GS) of the substrate possessing an electron-donating group (EDG). The Br${\o}$nsted-type plot for the reactions of Y-substituted-phenyl cinnamates (8a-8e) is linear with ${\beta}_{lg}$ = -0.64, which is typical of reactions reported previously to proceed through a concerted mechanism. The ${\alpha}$-nucleophile ($Ox^-$) is more reactive than the reference normal-nucleophile ($4-ClPhO^-$). The magnitude of the ${\alpha}$-effect (i.e., the $k_{Ox^-}/k_{4-ClPhO^-}$ ratio) is independent of the electronic nature of the substituent X in the nonleaving group but increases linearly as the substituent Y in the leaving group becomes a weaker electron-withdrawing group (EWG). It has been concluded that the difference in solvation energy between $Ox^-$ and $4-ClPhO^-$ (i.e., GS effect) is not solely responsible for the ${\alpha}$-effect but stabilization of transition state (TS) through a cyclic TS structure contributes also to the Y-dependent ${\alpha}$-effect trend (i.e., TS effect).

Nucleophilic Substitution Reactions of Phenyl Y-Substituted-Phenyl Carbonates with Butane-2,3-dione Monoximate and 4-Chlorophenoxide: Origin of the α-Effect

  • Kim, Min-Young;Min, Se-Won;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.49-53
    • /
    • 2013
  • Second-order rate constants have been measured spectrophotometrically for the reactions of phenyl Y-substituted-phenyl carbonates 7a-g with butane-2,3-dione monoximate ($Ox^-$) in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. The ${\alpha}$-nucleophile $Ox^-$ is 53-95 times more reactive than the corresponding normal-nucleophile 4-$ClPhO^-$ toward 7a-g, indicating that the ${\alpha}$-effect is operative. The magnitude of the ${\alpha}$-effect (e.g., the $k_{Ox^-}/k_{4-ClPhO^-}$ ratio) is independent of the electronic nature of the substituent Y. The cause of the ${\alpha}$-effect for the reactions of 7a-g has been suggested to be ground-state (GS) effect rather than transition-state (TS) stabilization through a six-membered cyclic TS, in which $Ox^-$ behaves a general acid/base catalyst. This idea is further supported by the result that $OH^-$ exhibits negative deviation from the linear Br${\o}$nsted-type plot composed of a series of aryloxides, while $Ox^-$ deviates positively from the linearity. Differential solvation of the GS of $Ox^-$ and 4-$ClPhO^-$ has been suggested to be responsible for the ${\alpha}$-effect exerted by $Ox^-$.

Stabilization of Arsenic in Paddy Soils Using Stabilizers (논토양 내 비소 불용화에 대한 안정화물질의 처리 효과)

  • Kang, Min Woo;Oh, Sejin;Kim, Sung-Chul;Lee, Sang Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.1
    • /
    • pp.17-22
    • /
    • 2019
  • BACKGROUND: Soil contamination of As is a very sensitive environmental issue due to its adverse impact on human health and different characteristics with other heavy metals. With public awareness of As poisoning, there has been growing interest in developing guideline and remediation technologies for As-contaminated soil. The objective of this research was to evaluate the effectiveness of stabilizing amendments and soil dressing methods on the mobility of As in the contaminated rice paddy soils nearby mining area. METHODS AND RESULTS: Different amendments were mixed with surface and subsurface contaminated soils at a ratio of 3% (w/w) and monitored for five months. Three different extractants including 0.01M $CaCl_2$, TCLP, and PBET were used to examine As bioavailability in the soil and the concentration of As in rice grain was also measured with an inductively coupled plasma (ICP) spectroscopy. The results showed that all amendment treatments decreased As concentration compared to the control. Especially, coal mine drainage sludge (CMDS) treatment showed the highest efficiency of decreasing As concentration in the soil and rice grain. The values of Pearson correlation (r) between As concentrations in the soil and rice grain were 0.782, 0.753, and 0.678 for $CaCl_2$, TCLP, and PBET methods, respectively. Especially, $CaCl_2$ method was highly correlated between As concentrations of the soil and soil solution (r=0.719), followed by TCLP (r=0.706), PBET (r=0.561) methods. CONCLUSION: Stabilizing amendments can effectively reduce available As concentration in the soils as well as soil solution, and thereby potentially mitigating risks of crop contamination by As.

Performance Improvement in Single-Phase Electric Spring Control

  • Wang, Qingsong;Zuo, Wujian;Cheng, Ming;Deng, Fujin;Buja, Giuseppe
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.784-793
    • /
    • 2019
  • Two objectives can be pursued simultaneously with the ${\delta}$ control of a single-phase electric spring (ES). These objectives are the stabilization of the voltage across the critical load (CL) of a power system, and the achievement of a specific functionality similar to the pure compensation of reactive power or the correction of the power factor. However, existing control systems implementing the ${\delta}$ control do not cope with non-ideal operating conditions, such as line voltage distortions, and exhibit a somewhat sluggish regulation of the CL voltage. In an effort to improve both the steady-state and transient performances of an ES power system, this paper proposes implementing the ${\delta}$ control by means of a control system built up on the repetitive control and assisted by state feedback with pole assignment. This paper starts by analyzing the dynamics of an ES power system in terms of its poles and zeros. After that, a reduced second-order model of the dynamics is formulated to avoid a notch filter in the pole assignment. A repetitive control for an ES power system is then designed to meet the two above mentioned objectives. Experimental tests carried out on a laboratory setup demonstrate the effectiveness of the proposed control system in significantly improving the ES power system performance, while reaching the two objectives. In particular, the tests outline the large mitigation of harmonics in the CL voltage under line voltage distortions and its fast stabilization action.

Pressure Effect on the Aquation of trans-[Cr(tn)$_2Cl_2]^+$ and trans-[Cr(en)(tn)Cl$_2]^+$ Complex Ions (trans-[Cr(tn)$_2Cl_2]^+$ 및 trans-[Cr(en)(tn)Cl$_2]^+$ 착이온의 수화반응에 미치는 압력효과)

  • Jong-Jae Chung;Jong-Ha Choi;Deog-Jin Kim
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.375-381
    • /
    • 1987
  • Rates for the aquation of trans-[Cr(tn)$_2Cl_2]^+$ and trans-[Cr(en)(tn)Cl$_2$]^+$ ions in aqueous acidic solution have been measured by spectrophotometric method at various temperatures and pressures. Activation volumes are negative and lie in the limited range -1.7 ∼ -2.9cm$^3$mol$^{-1}$ or the complex ions. Activation entropies and activation compressibility coefficients are small negative values. From the results of thermodynamic parameters, it can be inferred that the aquation of the complex ions proceed through an associative interchange(Ia) mechanism. Furthermore, the information on possible transition state structure and reaction paths can be obtained by considering total stabilization energy of the hypothetical intermediates within the framework of angular overlap model. It is found that the theoretically predicted mechanism is consistent with the experimentally observed results.

  • PDF

Effect of Process Condition on Tensile Properties of Carbon Fiber

  • Lee, Sung-Ho;Kim, Ji-Hoon;Ku, Bon-Cheol;Kim, Jun-Kyong;Chung, Yong-Sik
    • Carbon letters
    • /
    • v.12 no.1
    • /
    • pp.26-30
    • /
    • 2011
  • For polyacrylonitrile (PAN) based carbon fiber (CF) process, we developed a lab scale wet spinning line and a continuous tailor-made stabilization system with ten columns for controlling temperature profile. PAN precursor was spun with a different spinning rate. PAN spun fibers were stabilized with a total duration of 45 to 110 min at a given temperature profile. Furthermore, a stabilization temperature profile was varied with the last column temperature from 230 to $275^{\circ}C$. Stabilized fibers were carbonized in nitrogen atmosphere at $1200^{\circ}C$ in a furnace. Morphologies of spun and CFs were observed using optical and scanning electron microscopy, respectively. Tensile properties of resulting CFs were measured. The results revealed that process conditions such as spinning rate, stabilization time, and temperature profile affect microstructure and tensile properties of CFs significantly.

Structural evolution and kinetic study of high isotacticity poly(acrylonitrile) during isothermal pre-oxidation

  • Zhang, Li;Dai, Yongqiang;Kai, Yi;Jin, Ri-Guang
    • Carbon letters
    • /
    • v.12 no.4
    • /
    • pp.229-235
    • /
    • 2011
  • Isotactic polyacrylonitrile (PAN) with triad isotacticity of 0.53, which was determined by $^{13}C$ NMR, using dialkylmagnesium as an initiator, was successfully synthesized. Isothermal treatment of iso-PAN was conducted in air at 200, 220, 250 and $280^{\circ}C$. Structural evolutions and chemical changes were studied with Fourier transformation infrared and wide-angle X-ray diffraction during stabilization. A new parameter $CNF={I_{2240cm}}^{-1}/ ({I_{1595cm}}^{-1}+f^*{I_{1595cm}}^{-1})$ was defined to evaluate residual nitrile groups. Crystallinity and crystal size were calculated with X-ray diffraction dates. The results indicated that the nitrile groups had partly converted into a ladder structure as stabilization proceeded. The rate of reaction increased with treatment temperature; crystallinity and crystal size decreased proportionally to pyrolysis temperature. The iso-conversional method coupled with the Kissinger and Flynn-Wall-Ozawa methods were used to determine kinetic parameters via differential scanning calorimetry analysis with different heating rates. The active energy of the reaction was 171.1 and 169.1 kJ/mol, calculated with the two methods respectively and implied the sensitivity of the reaction with temperature.