• Title/Summary/Keyword: Civil Planning

Search Result 1,037, Processing Time 0.031 seconds

SENSITIVITY ANALYSIS ABOUT THE METHODS OF UTILIZING THE HIGH RESOLUTION CLIMATE MODEL SIMULATION FOR KOREAN WATER RESOURCES PLANNING (I) : THEORETICAL METHODS AND FORMULATIONS

  • Jeong, Chang-Sam;Lee, Sang-Jin;Ko, Ick-Hwan;Heo, Jun-Haeng;Bae, Deg-Hyo
    • Water Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.63-71
    • /
    • 2005
  • Nowadays Climate disasters are frequently happening due to occasional occurrences of EI Nino and La Nina events and among them, water shortage is one of the serious problems. To cope with this problem, climate model simulations can give very helpful information. To utilize the climate model for enhancing the water resources planning techniques, probabilistic measures of the effectiveness of global climate model (GCM) simulations of an indicator variable for discriminating high versus low regional observations of a target variable are proposed in this study. The objective of this study is to present the various analysis methods to find the suitable application methods of GCM information for Korean water resources planning. The basic formulation uses the significance probability of the Kolmogorov-Smirnov test for detecting differences between two variables. The various methods for adopting correct association, changing the window size, discrimination condition, and the use of temporally down scaled data were proposed to find out the suitable way for Korean water resources planning.

  • PDF

Mechanical behavior and chloride resistance of cementitious composites with PE and steel fiber

  • Liao, Qiao;Guo, Zhen-wen;Duan, Xin-zhi;Yu, Jiang-tao;Liu, Ke-ke;Dong, Fang-yuan
    • Advances in concrete construction
    • /
    • v.12 no.6
    • /
    • pp.451-459
    • /
    • 2021
  • The mechanical behaviors and chloride resistance performance of fiber reinforced cementitious composites (FRCC) with hybrid polyethylene (PE) and steel fiber (in total 2% by volume) were investigated. Based on micro-mechanics and fracture mechanics, the reason why the tensile strain capacity of FRCC changed obviously was obtained. Besides, the effects of the total surface area of fiber in FRCC on compressive strength and chloride content were clarified. It is found that the improvement of the tensile strain capacity of FRCC with hybrid fiber is attributed to the growth of strain-hardening performance index (the ratio of complementary energy to crack tip toughness). As the total surface area of fiber related with the interfacial transition zone (ITZ) between fiber and matrix increases, compressive strength decreases obviously. Since the total surface area of fiber is small, the chloride resistance performance of FRCC with hybrid PE and steel fiber is better than that of FRCC containing only PE fiber.

FACTORS ACOUNTING FOR ACTIVITY-TIME AND PROJECT-TIME UNCERTAINITIES IN BORED PILES CONSTRUCTION PLANNING: CASE STUDY ON A BUIDLING PROJECT IN HONG KONG

  • Stephen K.K. Cheng;Ming Lu;Hongqin Fan
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.747-753
    • /
    • 2009
  • Planning the construction for a system of bored piles in building foundation engineering is (1) to predict the time duration required to complete all the bored piles with due consideration of relevant engineering factors and site constraints; then (2) to predict the total project time generally by aggregating the predicted working duration for construction of each bored pile. The duration for construction of an individual bored pile results from analyzing various working sequences and different activity duration (such as predrilling, excavation, steelfixing, air-lifting, and concreting, etc.), which is informed by experiences and site records of previous projects. However, determining the project duration for constructing many bored piles on one site is much more complicated than adding up the time duration for individual piles. In practice, project schedules are often found to be unrealistic and incorrect during the construction stage. This is because construction planning is not based on a exhaustive and comprehensive evaluation of site factors, such as site layout plan, site constraints, quality control, environmental control, safety control and logical relationships between different trades. In this paper, we identify those factors based on a foundation engineering site in Hong Kong with ninety-seven bored piles and address their effects on uncertainties in activity time and project time.

  • PDF

Development of an Approximate Cost Estimating Framework for River Facility Construction at Planning Stage (하천시설물 공사의 기획단계 개략공사비 산정체계 개발)

  • Shin, Jung Min;Woo, Sungkwon;Lee, Si Wook;Kim, Ok Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3D
    • /
    • pp.371-381
    • /
    • 2008
  • The systematic methodology for estimating construction cost approximately at planning and pre-design phase of a river facility construction project has not yet been established because of its unique characteristics including its relatively small project size in terms of cost. This research suggests a 4-level cost information structure and identifies critical factors affecting construction cost as a result of thorough analysis of accumulated historical cost data of river facility construction projects. Also, this research presents the framework of the approximate cost estimating methodology for river facility construction project a planning stage.

Line Planning Optimization Model for Intercity Railway (지역간 철도의 노선계획 최적화 모형)

  • Oh, Dongkyu;Kho, Seung-Young;Kang, Seungmo
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.2
    • /
    • pp.80-89
    • /
    • 2013
  • The purpose of this research is to optimize the line planning of the intercity passenger railway. In this study, the line planning problem has been formulated into a mixed integer programming by minimizing both user costs (passenger's total travel time) and operator costs (operation, maintenance and vehicle costs) with multiple train types. As a solution algorithm, the branch-and-bound method is used to solve this problem. The change of travel demand, train speed and the number of schedules have been tested through sensitivity analysis. The optimal stop-schedules and frequency as well as system split with respect to each train type have been found in the case study of Kyoung-bu railway line in Korea. The model and results of this research are useful to make a decision for railway operation strategy, to analyze the efficiency of new railway systems and to evaluate the social costs of users and operators.

A Prototype of Distributed Simulation for Facility Restoration Operation Analysis through Incorporation of Immediate Damage Assessment

  • Hwang, Sungjoo;Choi, MinJi;Starbuck, Richmond;Lee, SangHyun;Park, Moonseo
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.339-343
    • /
    • 2015
  • To rapidly recover ceased functionality of a facility after a catastrophic seismic event, critical decisions on facility repair works are made within a limited period of time. However, prolonged damage assessment of facilities, due to massive damage in the surrounding region and the complicated damage judgment procedures, may impede restoration planning. To assist reliable structural damage estimation without a deep knowledge and rapid interactive analysis among facility damage and restoration operations during the approximate restoration project planning phase, we developed a prototype of distributed facility restoration simulations through the use of high-level architecture (HLA) (IEEE 1516). The simulation prototype, in which three different simulations (including a seismic data retrieval technique, a structural response simulator, and a restoration simulation module) interact with each other, enables immediate damage estimation by promptly detecting earthquake intensity and the restoration operation analysis according to estimated damage. By conducting case simulations and experiments, research outcomes provide key insights into post-disaster restoration planning, including the extent to which facility damage varies according to disaster severity, facility location, and structures. Additional insights arise regarding the extent to which different facility damage patterns impact a project's performance, especially when facility damage is hard to estimate by observation. In particular, an understanding of required type and amount of repair activities (e.g., demolition works, structural reinforcement, frame installation, or finishing works) is expected to support project managers in approximate work scheduling or resource procurement plans.

  • PDF

An efficient genetic algorithm for the design optimization of cold-formed steel portal frame buildings

  • Phan, D.T.;Lim, J.B.P.;Tanyimboh, T.T.;Sha, W.
    • Steel and Composite Structures
    • /
    • v.15 no.5
    • /
    • pp.519-538
    • /
    • 2013
  • The design optimization of a cold-formed steel portal frame building is considered in this paper. The proposed genetic algorithm (GA) optimizer considers both topology (i.e., frame spacing and pitch) and cross-sectional sizes of the main structural members as the decision variables. Previous GAs in the literature were characterized by poor convergence, including slow progress, that usually results in excessive computation times and/or frequent failure to achieve an optimal or near-optimal solution. This is the main issue addressed in this paper. In an effort to improve the performance of the conventional GA, a niching strategy is presented that is shown to be an effective means of enhancing the dissimilarity of the solutions in each generation of the GA. Thus, population diversity is maintained and premature convergence is reduced significantly. Through benchmark examples, it is shown that the efficient GA proposed generates optimal solutions more consistently. A parametric study was carried out, and the results included. They show significant variation in the optimal topology in terms of pitch and frame spacing for a range of typical column heights. They also show that the optimized design achieved large savings based on the cost of the main structural elements; the inclusion of knee braces at the eaves yield further savings in cost, that are significant.

RAINFALL AND RUNOFF VARIATION ANALYSIS FOR WATER RESOURCES MANAGEMENT STRATEGIES

  • Sang-man;Heon, Joo-;Jong-ho;Kum-young
    • Water Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.111-121
    • /
    • 2004
  • For the long-term strategic water resources planning, forecasting the future streamflow change is important to meet the demand of a growing society. The streamflow variation to the decade-long precipitation was investigated for the two major stage gauging stations in Korea. Precipitation and runoff characteristics have been analyzed at Yongwol stream stage in the Han River as well as Sutong stream stage in the Kum River for the future water resources management strategies. Monte Carlo method has been applied to estimate the future precipitation and runoff. Based on the trend line of 10-year moving average of runoff depth for the historical runoff records, the relation between runoff and the time variation was examined in more detail using regression analysis. This study showed that the surface flows have been significantly decreased while precipitation has been stable in these basins. Decreasing in runoff reflects the regional watershed characteristics such as forest cover changes. The findings of this study could contribute to the planning and development for the efficient water resources utilization.

  • PDF

A Markov-based prediction model of tunnel geology, construction time, and construction costs

  • Mahmoodzadeh, Arsalan;Mohammadi, Mokhtar;Ali, Hunar Farid Hama;Salim, Sirwan Ghafoor;Abdulhamid, Sazan Nariman;Ibrahim, Hawkar Hashim;Rashidi, Shima
    • Geomechanics and Engineering
    • /
    • v.28 no.4
    • /
    • pp.421-435
    • /
    • 2022
  • The necessity of estimating the time and cost required for tunnel construction has led to extensive research in this regard. Since geological conditions are significant factors in terms of time and cost of road tunnels, considering these conditions is crucial. Uncertainties about the geological conditions of a tunnel alignment cause difficulties in planning ahead of the required construction time and costs. In this paper, the continuous-space, discrete-state Markov process has been used to predict geological conditions. The Monte-Carlo (MC) simulation (MCS) method is employed to estimate the construction time and costs of a road tunnel project using the input data obtained from six tunneling expert questionnaires. In the first case, the input data obtained from each expert are individually considered and in the second case, they are simultaneously considered. Finally, a comparison of these two modes based on the technique presented in this article suggests considering views of several experts simultaneously to reduce uncertainties and ensure the results obtained for geological conditions and the construction time and costs.