• Title/Summary/Keyword: Civil Infrastructures

Search Result 303, Processing Time 0.027 seconds

Experimental and numerical investigation on post-earthquake fire behaviour of the circular concrete-filled steel tube columns

  • Wang, Yu-Hang;Tang, Qi;Su, Mei-Ni;Tan, Ji-Ke;Wang, Wei-Yong;Lan, Yong-Sen;Deng, Xiao-Wei;Bai, Yong-Tao;Luo, Wei;Li, Xiao-Hua;Bai, Jiu-Lin
    • Steel and Composite Structures
    • /
    • v.38 no.1
    • /
    • pp.17-31
    • /
    • 2021
  • Post-earthquake fire is a common disaster which causes serious safety issues to infrastructures. This study aims to investigate the residual loading capacities of circular concrete-filled steel tube (CFST) columns under post-earthquake fire experimentally and numerically. The experimental programme contains two loading steps - pre-damage cyclic loading at room temperature and transient state tests with constant compression loads. Three finite element models are developed and validated against the test results. Upon validation, a total of 48 numerical results were generated in the parametric study to investigate the effects of thickness and strengths of steel tube, axial compression ratio and damage degree on the fire resistance of circular CFST columns. Based on the analysis on experimental and numerical results, the loading mechanism of circular CFST columns is discussed. A design method is proposed for the prediction of fire resistance time under different seismic pre-damage and compression loads. The predictions by the new method is compared with the newly generated experimental and numerical results and is found to be accurate and consistent with the mean value close to the unity and a coefficient of variation around 1%.

Damage Evaluation of Bi-directionally Prestressed Concrete Panels under Blast-fire Combined Loading (폭발 후 화재하중 시나리오에 따른 2방향 프리스트레스트 콘크리트 패널부재의 손상도 평가)

  • Choi, Ji-Hun;Choi, Seung-Jai;Kim, Tae-Kyun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.237-248
    • /
    • 2017
  • Frequent terror or military attack by explosion, impact, fire accidents have occurred recently. These attacks and incidents raised public concerns and anxiety of potential terrorist attacks on important infrastructures. However, structural behavioral researches on prestressed concrete (PSC) infrastructures such as Prestressed Concrete Containment Vessel (PCCV) and Liquefied Natural Gas (LNG) storage tanks under extreme loading are significantly lacking at this time. Also, researches on possible secondary fire scenarios after terror and bomb explosion has not been performed yet. Therefore, a study on PSC structural behavior from an blast-induced fire scenario was undertaken. To evaluate the blast-fire combined resistance capacity and its protective performance of bi-directional unbonded PSC member, blast-fire tests were carried out on $1,400mm{\times}1,000mm{\times}300mm$ PSC specimens. Blast loading tests were performed by the detonation of 25 kg ANFO explosive charge at 1.0 m standoff distance. Also, fire and blast-fire combined loading were tested using RABT fire loading curve. The test results are discussed in detail in the paper. The results can be used as basic research references for related research areas, which include protective design simulation under blast-fire combined loading.

Development of Defect-Repair Method-Cost Mapping Algorithm of Concrete Bridge Using BMS Data (BMS 데이터를 활용한 콘크리트 교량의 결함-공법-비용 매핑 알고리즘 개발)

  • Lee, Changjun;Park, Wonyoung;Cha, Yongwoon;Jang, Young-Hoon;Park, Taeil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.267-275
    • /
    • 2023
  • As aged infrastructures have been increased, the importance of accurate maintenance costs and proper budget allocation for infrastructure become prominent under limited resources. This study proposed a mapping algorithm between representative defects, repair methods, and the estimated maintenance costs for concrete bridges. In this regard, using BMS (Bridge Management System) data analysis, bridge repair methods were classified and matched with defects according to their locations, types, and sizes. In addition, the maintenance costs were estimated based on the amount of work-load and quantity per unit using CSPR (Cost Standard Production Rate). As a result, the level of accuracy was an average of 85.1 % compared with the actual bill of quantity for Seoul bridge maintenance. The accuracy of maintenance costs is expected to be enhanced by considering the various site conditions such as pier height, extra charge conditions, additional equipment, etc.

Damage mechanics approach and modeling nonuniform cracking within finite elements for safety evaluation of concrete dams in 3D space

  • Mirzabozorg, H.;Kianoush, R.;Jalalzadeh, B.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.1
    • /
    • pp.31-46
    • /
    • 2009
  • An anisotropic damage mechanics approach is introduced which models the static and dynamic behavior of mass concrete in 3D space. The introduced numerical approach is able to model non-uniform cracking within the cracked element due to cracking in Gaussian points of elements. The validity of the proposed model is considered using available experimental and theoretical results under the static and dynamic loads. No instability and stress locking is observed in the conducted analyses. The Morrow Point dam is analyzed including dam-reservoir interaction effects to consider the nonlinear seismic behavior of the dam. It is found that the resulting crack profiles are in good agreement with those obtained from the smeared crack approach. It is concluded that the proposed model can be used in nonlinear static and dynamic analysis of concrete dams in 3D space and enables engineers to define the damage level of these infrastructures. The performance level of the considered system is used to assess the static and seismic safety using the defined performance based criteria.

A Study on BIM Guidelines for Model-based Infrastructure Management (모델기반 사회기반시설 유지관리를 위한 BIM 가이드라인 고찰)

  • Kim, Bong-Geun;Kim, Ji-Won;Ji, Seung-Gu;Seo, Jong-Won
    • Journal of KIBIM
    • /
    • v.2 no.2
    • /
    • pp.10-16
    • /
    • 2012
  • This study aims to investigate basic requirements for adopting the Building Information Modeling(BIM) technology to management of civil infrastructures. The state of the art on BIM guidelines developed major countries was investigated, and a common framework of the guideline contents was built in order to categorize the requirements. In addition, it was investigated that the point of view on the facility management in the BIM guidelines showed different from the traditional civil infrastructure domain. On the basis of the investigation results, this paper proposed the core requirements categorized into three respects: development of application models, standardization, modification of regulations.

Improving cyclic behavior of multi-level pipe damper using infill or slit diaphragm inside inner pipe

  • Zahrai, Seyed Mehdi;Cheraghi, Abdullah
    • Structural Engineering and Mechanics
    • /
    • v.64 no.2
    • /
    • pp.195-204
    • /
    • 2017
  • Analytical and experimental studies of the innovative pipe in pipe damper have been recently investigated by the authors. In this paper, by adding lead or zinc infill or slit diaphragm inside the inner pipe, it is tried to increase the equivalent viscous damping ratio improving the cyclic performance of the recently proposed multi-level control system. The damper consists of three main parts including the outer pipe, inner pipe and added complementary damping part. At first plastic deformations of the external pipe, then the internal pipe and particularly the added core and friction between them make the excellent multi-level damper act as an improved energy dissipation system. Several kinds of added lead or zinc infill and also different shapes of slit diaphragms are modeled inside the inner pipe and their effectiveness on hysteresis curves are investigated with nonlinear static analyses using finite element method by ABAQUS software. Results show that adding lead infill has no major effect on the damper stiffness while zinc infill and slit diaphragm increase damper stiffness sharply up to more than 10 times depending on the plate thickness and pipe diameter. Besides, metal infill increases the viscous damping ratio of dual damper ranging 6-9%. In addition, obtained hysteresis curves show that the multi-level control system as expected can reliably dissipate energy in different imposed energy levels.

Cap truss and steel strut to resist progressive collapse in RC frame structures

  • Zahrai, Seyed Mehdi;Ezoddin, Alireza
    • Steel and Composite Structures
    • /
    • v.26 no.5
    • /
    • pp.635-647
    • /
    • 2018
  • In order to improve the efficiency of the Reinforced Concrete, RC, structures against progressive collapse, this paper proposes a procedure using alternate path and specific local resistance method to resist progressive collapse in intermediate RC frame structures. Cap truss consists of multiple trusses above a suddenly removed structural element to restrain excessive collapse and provide an alternate path. Steel strut is used as a brace to resist compressive axial forces. It is similar to knee braces in the geometry, responsible for enhancing ductility and preventing shear force localization around the column. In this paper, column removals in the critical position at the first story of two 5 and 10-story regular buildings strengthened using steel strut or cap truss are studied. Based on nonlinear dynamic analysis results, steel strut can only decrease vertical displacement due to sudden removal of the column at the first story about 23%. Cap truss can reduce the average vertical displacement and column axial force transferred to adjacent columns for the studied buildings about 56% and 61%, respectively due to sudden removal of the column. In other words, using cap truss, the axial force in the removed column transfers through an alternate path to adjacent columns to prevent local or general failure or to delay the progressive collapse occurrence.

Cyclic testing of innovative two-level control system: Knee brace & vertical link in series in chevron braced steel frames

  • Rousta, Ali Mohammad;Zahrai, Seyed Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.64 no.3
    • /
    • pp.301-310
    • /
    • 2017
  • For further development of passive control systems to dissipate larger seismic energy and prevent the structures from earthquake losses, this paper proposes an innovative two-level control system to improve behavior of chevron braced steel frames. Combining two Knee Braces, KB, and a Vertical Link Beam, VLB, in a chevron braced frame, this system can reliably sustain main shock and aftershocks in steel structures. The performance of this two-level system is examined through a finite element analysis and quasi-static cyclic loading test. The cyclic performances of VLB and KBs alone in chevron braced frames are compared with that of the presented two-level control system. The results show appropriate performance of the proposed system in terms of ductility and energy dissipation in two different excitation levels. The maximum load capacity of the presented system is about 30% and 17% higher than those of the chevron braced frames with KB and VLB alone, respectively. In addition, the maximum energy dissipation of the proposed system is about 78% and 150% higher than those of chevron braced frames with VLB and KB respectively under two separate levels of lateral forces caused by different probable seismic excitations. Finally, high performance under different earthquake levels with competitive cost and quick installation work for the control system can be found as main advantages of the presented system.

Hourly SWAT Watershed Modeling for Analyzing Reduction Effect of Nonpoint Source Pollution Discharge Loads (비점원오염 저감효과 분석을 위한 시단위 SWAT 유역 모델링)

  • Jang, Sun Sook;Ahn, So Ra;Choi, Joong Dae;Kim, Seong Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.1
    • /
    • pp.89-97
    • /
    • 2015
  • This study is to assess the effect of non-point source pollution discharge loads between tillage and no-tillage applications for upland crop areas using SWAT (Soil and Water Assessment Tool) watershed modeling. For Byulmi-cheon small rural catchment ($1.17km^2$) located in upstream of Gyeongan-cheon watershed, the rainfall, discharge and stream water quality have been monitored in the catchment outlet since 2011. The SWAT model was calibrated and validated in hourly basis using 19 rainfall events during 2011-2013. The average Nash-Sutcliffe model efficiency and $R^2$ (determination coefficient) for streamflow were 0.67 and 0.79 respectively. Using the 10 % surface runoff reduction from experiment results for no-tillage condition in field plots of 3 % and 8 % slopes under sesami cultivation, the soil saturated hydraulic conductivity for upland crop areas was adjusted from 0.001 mm/hr to 0.0025 mm/hr in average. Under the condition, the catchment sediment, T-N (total nitrogen, TN), and T-P (total phosphorus, TP) discharge loads were reduced by 6.9 %, 7.4 %, and 7.7 % respectively.

Experimental study on repair of corroded steel beam using CFRP

  • Chen, Meiling;Das, Sreekanta
    • Steel and Composite Structures
    • /
    • v.9 no.2
    • /
    • pp.103-118
    • /
    • 2009
  • It has been reported that more than thirty five percent of steel bridges in the USA are structurally deficient because of structural degradations. The degraded structures need either full replacement or rehabilitation such that they are able to provide the required services for a longer period of time. The cost for repair in most cases is far less than the cost of replacement. Moreover, repair method generally takes less time than replacement and also reduces service interruption time. Modern advanced composites have been used in aerospace and automotive fields since World War II. In the recent past, because of the high strength-to-weight ratio and high stiffness-to-weight ratio, these composite materials have been introduced to civil engineering infrastructures primarily for repair and rehabilitation of concrete structures. However, only a few preliminary studies on repair of corroded steel structures using theses composite materials are reported in the literature available in the public domain. Thus, in this study, a series of laboratory tests was undertaken to evaluate the effectiveness of this repair method using carbon fiber reinforced polymer composite. The paper discusses the test method and test results obtained from these tests.