• Title/Summary/Keyword: Civil Infrastructures

Search Result 303, Processing Time 0.026 seconds

Computer vision and deep learning-based post-earthquake intelligent assessment of engineering structures: Technological status and challenges

  • T. Jin;X.W. Ye;W.M. Que;S.Y. Ma
    • Smart Structures and Systems
    • /
    • v.31 no.4
    • /
    • pp.311-323
    • /
    • 2023
  • Ever since ancient times, earthquakes have been a major threat to the civil infrastructures and the safety of human beings. The majority of casualties in earthquake disasters are caused by the damaged civil infrastructures but not by the earthquake itself. Therefore, the efficient and accurate post-earthquake assessment of the conditions of structural damage has been an urgent need for human society. Traditional ways for post-earthquake structural assessment rely heavily on field investigation by experienced experts, yet, it is inevitably subjective and inefficient. Structural response data are also applied to assess the damage; however, it requires mounted sensor networks in advance and it is not intuitional. As many types of damaged states of structures are visible, computer vision-based post-earthquake structural assessment has attracted great attention among the engineers and scholars. With the development of image acquisition sensors, computing resources and deep learning algorithms, deep learning-based post-earthquake structural assessment has gradually shown potential in dealing with image acquisition and processing tasks. This paper comprehensively reviews the state-of-the-art studies of deep learning-based post-earthquake structural assessment in recent years. The conventional way of image processing and machine learning-based structural assessment are presented briefly. The workflow of the methodology for computer vision and deep learning-based post-earthquake structural assessment was introduced. Then, applications of assessment for multiple civil infrastructures are presented in detail. Finally, the challenges of current studies are summarized for reference in future works to improve the efficiency, robustness and accuracy in this field.

Development and application of a vision-based displacement measurement system for structural health monitoring of civil structures

  • Lee, Jong Jae;Fukuda, Yoshio;Shinozuka, Masanobu;Cho, Soojin;Yun, Chung-Bang
    • Smart Structures and Systems
    • /
    • v.3 no.3
    • /
    • pp.373-384
    • /
    • 2007
  • For structural health monitoring (SHM) of civil infrastructures, displacement is a good descriptor of the structural behavior under all the potential disturbances. However, it is not easy to measure displacement of civil infrastructures, since the conventional sensors need a reference point, and inaccessibility to the reference point is sometimes caused by the geographic conditions, such as a highway or river under a bridge, which makes installation of measuring devices time-consuming and costly, if not impossible. To resolve this issue, a visionbased real-time displacement measurement system using digital image processing techniques is developed. The effectiveness of the proposed system was verified by comparing the load carrying capacities of a steel-plate girder bridge obtained from the conventional sensor and the present system. Further, to simultaneously measure multiple points, a synchronized vision-based system is developed using master/slave system with wireless data communication. For the purpose of verification, the measured displacement by a synchronized vision-based system was compared with the data measured by conventional contact-type sensors, linear variable differential transformers (LVDT) from a laboratory test.

Establishment of Resilient Infrastructures for the Mitigation of an Urban Water Problem: 1. Robustness Assessment of Structural Alternatives for the Problem of Urban Floods (도시 물 문제 저감을 위한 회복탄력적 사회기반시설 구축: 1. 도시 홍수 문제 구조적 대안의 내구성 평가)

  • Lee, Changmin;Jung, Jihyeun;An, Jinsung;Kim, Jae Young;Choi, Yongju
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.2
    • /
    • pp.117-125
    • /
    • 2016
  • Current cities encounter various types of water problems due to rapid urbanization and climate change. The increasing significance of urban water problems calls for the establishment of resilient alternatives to prevent and minimize social loss that results from these phenomena. As a background research for establishing resilient infrastructures for the mitigation of urban water problems, we evaluated the robustness of structural alternatives for urban flood as a representative case. Combining the robustness index (RI) and the cost index (CI), we suggested the robustness-cost index (RCI) as an indicator of the robustness of structural alternatives, and applied the index to assess the existing infrastructures and structural alternatives (i.e., sewer network expansion, additional storage tank construction, and green roof construction) at a site prone to floods located around Gangnam-station, Seoul, Korea. At a rainfall intensity frequency range of 2 to 20 years, the usage of a storage tank and a green roof showed relatively high RCI value, with a variation of an alternative showing greater RCI between the two depending on the size of design rainfall. For a rainfall intensity frequency of 30 years, installing a storage tank with some green roofing was the most resilient alternative based on the RCI value. We proposed strategies for establishing resilient infrastructures for the mitigation of urban floods by evaluating the robustness of existing infrastructures and selecting optimal structural alternatives with the consideration of scales of design disaster.

A Study on Evaluation Criteria for Infrastructure Importance regarding Earthquake (공공시설물 지진대응을 위한 중요도 평가기준에 관한 연구)

  • Park, Jae-woo;Kim, Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.6
    • /
    • pp.317-327
    • /
    • 2018
  • The perception of earthquake in Korea has changed due to the earthquake that occurred in Gyeongju and Pohang, and the earthquake has become an important factor in infrastructure management. Damage to infrastructures in the event of an earthquake is extensive. In particular, damage to infrastructures that perform public function used to spread to the whole area. From the point of view of earthquake disaster prevention, it is very important for the public to define what infrastructures are important management targets and to prepare a countermeasure. In this study, we propose a method to evaluate the importance of infrastructure to effectively manage infrastructures for earthquakes. For this purpose, important factors for the railway bridges, power generation and electric power facilities, and apartment complexes are suggested. AHP analysis is conducted to suggest priorities. In addition, the evaluation criteria for infrastructure importance are presented.

Effect of higher order terms of Maclaurin expansion in nonlinear analysis of the Bernoulli beam by single finite element

  • Zahrai, Seyed Mehdi;Mortezagholi, Mohamad Hosein;Mirsalehi, Maryam
    • Structural Engineering and Mechanics
    • /
    • v.58 no.6
    • /
    • pp.949-966
    • /
    • 2016
  • The second order analysis taking place due to non-linear behavior of the structures under the mechanical and geometric factors through implementing exact and approximate methods is an indispensible issue in the analysis of such structures. Among the exact methods is the slope-deflection method that due to its simplicity and efficiency of its relationships has always been in consideration. By solving the differential equations of the modified slope-deflection method in which the effect of axial compressive force is considered, the stiffness matrix including trigonometric entries would be obtained. The complexity of computations with trigonometric functions causes replacement with their Maclaurin expansion. In most cases only the first two terms of this expansion are used but to obtain more accurate results, more elements are needed. In this paper, the effect of utilizing higher order terms of Maclaurin expansion on reducing the number of required elements and attaining more rapid convergence with less error is investigated for the Bernoulli beam with various boundary conditions. The results indicate that when using only one element along the beam length, utilizing higher order terms in Maclaurin expansion would reduce the relative error in determining the critical buckling load and kinematic parameters in the second order analysis.

Geometric moire fringe fiber optic accelerometer system for monitoring civil infrastructures (토목 구조물 건전성 평가를 위한 무아레 프린지 기법 광섬유 가속도계 시스템 개발)

  • Kim, Dae-Hyun;Feng, Maria Q.
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.40-46
    • /
    • 2006
  • This paper presents a novel fiber optic accelerometer system for monitoring vibration of large-size structures. The system is composed of one (or multiple) sensor head, a light control unit and a signal processing unit. The sensing mechanism of the sensor head is based on a novel integration of the moire fringe phenomenon with fiber optics to achieve a robust performance in addition to its immunity to EM interference, easy cabling, and low cost. In this paper, a prototype of the fiber optic accelerometer system has been developed successfully. A low-cost light control unit has been developed to drive the system's optic and electronic components. A unique algorithm has also been developed to derive the sensor's acceleration from the raw signals of the light control unit; it is implemented via a separate signal processing unit. Finally, the shaking table tests successfully demonstrate the performance and the potential of the moire fringe fiber optic sensor system to monitor the health of civil infrastructures.

Database Construction Plan of Infrastructure Safety Inspection and In-depth Inspection Results (사회기반 시설물의 안전점검 및 정밀안전진단결과 DB 구축방안 연구)

  • Ryu, Jong Mo;Shin, Eun Chul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.133-141
    • /
    • 2014
  • This study was carried out to establish the database system by using the safety inspection and in-depth inspection results for infrastructures such as bridges, tunnels, dams, and water supplies. A classification system of each facility was proposed by standardizing items for inspection & diagnosis in order to automatize work process. Also, it justifies data structure based on database from pre-investigation to field survey, evaluation of facilities, and report making. In addition to this, it suggests improvement plans of relative regulations and guidelines such as Facility Management System(FMS), operational regulation, and inspection detailed guideline to make inspection result database of infrastructures which can be used effectively.

Application of High-precision Accelerometer Made in Korea to Health Monitoring of Civil Infrastructures (국산 고정밀 가속도계의 건설 구조물 적용성 평가)

  • Kwon, Nam-Yeol;Kang, Doo-Young;Sohn, Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.3
    • /
    • pp.277-283
    • /
    • 2016
  • A high-precision force-feedback 3-axes accelerometer developed in Korea has been investigated and studied for the verification of feasibility in the computational analysis and health monitoring of civil infrastructures. Through a series of experiment, the nonlinearity, bandwidth, low-frequency signal measurement accuracy and bias characteristics of the accelerometer has been thoroughly compared to those of two accelerometers produced by two market leaders in domestic and global accelerometer market. The experiment results shows that the overall measurement performance of the accelerometer has superiority over the performance of the two accelerometers from global market leader companies. Especially, the accelerometer shows a better low-frequency signal measurement accuracy and constant bias characteristic, which are mostly required in the computational analysis and the long-term health monitoring of large-scale civil infrastructures.

Development of an Improved Inspection System for Slopes adjacent to Educational Facilities (개선된 교육시설 인접 사면 점검체계 구축)

  • Ko, Jun-Young;Lee, Joon-Kyu;Park, Ku-Byoung;Lee, Byoung-Ho;Kim, Jae-Young
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.28 no.4
    • /
    • pp.3-10
    • /
    • 2021
  • This study presents an improved inspection system for slopes adjacent to educational facilities. For this, field investigations for 5 schools and 3 universities were performed to analyze the engineering stability of infrastructures, which ensure the safety of students and educational officers. Educational laws and the relevant enforcement are reviewed to understand the problems of current laws and enforcement. The results reveal that the engineering measures and reinforcement are required for the slopes of 36%. Also, the improvement of social awareness and regular inspection is needed to maintain the educational infrastructures. The suggested inspection system includes the fundamental and detailed checklists and guidance for non-engineering specialists.