• Title/Summary/Keyword: Civil

Search Result 37,397, Processing Time 0.057 seconds

The Satisfaction Research on the Multilateral Cooperative Military Training of Using the XR Technology (XR 기술을 활용한 다자간 협업 군사훈련 만족도조사)

  • Lee Yong Il
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.5
    • /
    • pp.23-28
    • /
    • 2024
  • So far, most of the military trainings were carried out in the field, and were influenced by the various parameters of the weather, the climate and the civil complaints regarding the noise. Also, it's the reality that the considerable time and resources are required to maneuver the weapon system used for the military training. Furthermore, the serious damage and casualties during tha military training are important parameters that can't be ignored. Recently, with the development of 5G communication networks and XR technologies, XR technologies are used in various fields that participate with multilateral parts, i.e. in military technology and training. In this paper, to implement the military education, 5G communication network and military education training system were established. The military education training system were composed that over 10 persons were possible to train in the various circumstances such as counter combat, mountains combat, urban combat and beaches combat. Also it is possible to fight with AI combatants, and train the gun disassembly and assembly, and train the various firing exercise. The military training system of using XR technologies were applied to the multilateral military training, and we analyzed the satisfaction results for the experienced persons of this XR system.

Selection of Plant Species for Phytoremediation of Arsenic Contaminated Sandy Soil in a Pine Forest at Janghang, Korea (장항 송림 비소오염토양의 식물재배정화를 위한 식물종 선정)

  • Bumhan Bae;Younghun Kim
    • Ecology and Resilient Infrastructure
    • /
    • v.11 no.3
    • /
    • pp.65-77
    • /
    • 2024
  • A series of experiments were performed to select suitable plant species for phytoremediation of arsenic (As) contaminated sandy pine forest soil in Janghang. Native plant species could uptake and remove As and sustain growth under the allelopathy of the pine forest and half-shade environmental conditions. We transplanted a total of 11 species into the pine forest in a pot, cultured them in a greenhouse for 3 months, and then harvested these plants to measure As accumulation, fresh weight, bioconcentration factor (BCF), and the amount of As removal per plant. The BCF of Lampranthus spectabilis was 3.52 and the amount of As taken up in Pennisetum alopecuroides shoots was 111.95 mg/kg. Higher biomass plants Lampranthus spectabilis and Lonicera japonica took up 8.49 mg/kg and 2.87 mg/kg of As in the above-ground parts, respectively. We applied oxalaic acid of 10, 20, and 40 mmol/kg-soil in total (divided into 15-20 splits) to each pot over a period of one month to enhance As uptake. Results showed no significant changes in plant growth or soil dehydrogenase activity. However, a statistically significant increase (p<0.05) in As uptake in Pennisetum alopecuroides was observed when a higher amount of oxalic acid (40 mmol/kg-soil) was applied.

A Study on the Performance-Based Bridge Asset Valuation Methods Considering Hazard (교량의 위험성을 고려한 성능기반 자산가치 평가방법에 관한 연구)

  • Yong-Jun Lee;Kyung-Hoon Park;Jong-Wan Sun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.5
    • /
    • pp.30-37
    • /
    • 2024
  • The valuation of infrastructure assets is typically conducted using the straight-line method, which employs the depreciated replacement cost as a basis. However, this approach has the limitation of failing to accurately reflect the actual value of the facility. In light of these considerations, the performance-based depreciation (PBD) method has been proposed as a means of evaluating the asset value of bridges on the basis of their performance, although it is not designed to take account of the environmental characteristics of individual bridges. This study proposes a hazard-performance based depreciation (HPBD) method that considers the risk level of individual bridges in the PBD method proposed in previous studies. The applicability of the proposed method was evaluated on more than 8,000 bridges. The risk factors for deterioration of bridges were selected, the hazard level of individual bridges was evaluated, and weights based on the hazard level were applied to the PBD method. The evaluation resulted in a present value comparable to that of the PBD method and a relatively high future value. It is postulated that the HPBD method, which considers the risk characteristics of individual bridges, can be used for a more reasonable evaluation and decision-making process.

Evaluation of Accuracy of Spatio-Temporal Image Analysis Methods Using Artificial Images and Proposal of a Hybrid Method (인공시공간영상을 이용한 시공간영상분석법의 정확도 평가와 혼합분석법의 제안)

  • Kwonkyu Yu
    • Ecology and Resilient Infrastructure
    • /
    • v.11 no.3
    • /
    • pp.100-109
    • /
    • 2024
  • There are various methods in surface image velocimetry that can measure the flow velocity of a river surface using footage of a river surface. Among them, spatio-temporal image velocimetry (STIV) is widely used. This paper analyzed advantages and disadvantages of two STIV methods developed by the author, correlation-based STIV (C-STIV) and FFT-based STIV (F-STIV). This study also proposed a new method, hybrid STIV (H-STIV), that could supplement the advantages and disadvantages of the two existing methods by combining them. For the analyses, 20 cases of artificial spatio-temporal images, having image displacement ranging from 0.1 px/fr to 19.0 px/fr, were prepared. As a result, F-STIV was accurate with footage containing small image displacements and C-STIV was more accurate with footage containing large image displacements. For images with medium displacement, the two methods showed similar accuracies. Based on this result, H-STIV was proposed to adopt the result of F-STIV in displacements smaller than 2.0 px/fr (image strip slope 63.4°) and the result of C-STIV in larger displacements. As a result of applying the proposed method to argumentation, it was confirmed that H-STIV could calculate the flow velocity efficiently according to the situation.

Correlation Study of Carbonation Analysis Methods for Cement Paste with Fly Ash (플라이애시가 혼입된 시멘트 페이스트의 탄산화 분석방법에 따른 상관관계 연구)

  • Eun-A Seo;Ho-Jae Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.5
    • /
    • pp.54-61
    • /
    • 2024
  • This study conducted accelerated carbonation experiments on cement pastes using OPC and FA. It derived the correlation of pH prediction methods through component analysis of the carbonated pastes. Analysis of weight change due to thermal decomposition was performed using TG-DTA, and component analysis was conducted using XRF. A comparative review of each experimental result and pH measurement result was carried out. The study proposed a correlation analysis method between the component ratio of CO2 and CaO, the component ratio of calcium carbonate and calcium hydroxide, and pH. By analyzing the relationship between the CO2 components measured by XRF and pH, the correlation coefficients of all mixtures were 0.84 or higher, indicating a strong correlation.The correlation analysis of calcium carbonate and calcium hydroxide with pH using TG-DTA showed that the correlation coefficient for calcium carbonate was more than 0.86 for all formulations. However, the correlation coefficient between calcium hydroxide and pH was low, so a study was conducted to analyze the correlation with pH using the ratio of the results of the two components.

Analysis of Vibration Characteristics Changes in a Single-Span Bridge Due to Temperature Using Continuous Measurement Data (상시 계측 데이터를 이용한 단경간 교량의 온도에 따른 진동 특성 변화 분석)

  • Tae-Ho Kwon;Byeong-Cheol Kim;Ki-Tae Park;Chi-Ho Jeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.5
    • /
    • pp.62-68
    • /
    • 2024
  • The Republic of Korea experiences four distinct seasons, with significant temperature differences between summer and winter, causing bridges to undergo large temperature variations throughout the year. When the temperature changes, the dynamic characteristics of bridge structures also change. However, during load-bearing capacity assessments in domestic bridge maintenance, this temperature effect is not considered, and only the natural frequency measured over a short period is used for evaluation. In this paper, we theoretically analyze the impact of changes in natural frequency on bridges and extract daily estimated natural frequency data from bridges with continuous vertical acceleration measurements taken over more than a year to confirm temperature-induced changes. The results show that a 1% decrease in natural frequency corresponds to an approximately 2% decrease in the load-bearing capacity of the bridge. Additionally, it was found from the measurement data that a 10℃ increase in temperature did not affect the natural frequency of RC slab bridges and Rahmen bridges, but in PSC-I girder bridges and steel box girder bridges, the natural frequency decreased by approximately 1.04% to 2.48%.

Development of a Machine Learning-Based Model for the Prediction of Chloride Diffusion Coefficient Using Concrete Bridge Data Exposed to Marine Environments (기계학습 기반 해양 노출 환경의 콘크리트 교량 데이터를 활용한 염화물 확산계수 예측모델 개발)

  • Woo-Suk Nam;Hong-Jae Yim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.5
    • /
    • pp.20-29
    • /
    • 2024
  • The chloride diffusion coefficient is a critical indicator for assessing the durability of concrete marine substructures. This study develops a prediction model for the chloride diffusion coefficient using data from concrete bridges located in marine exposure zones (atmospheric, splash, tidal), an aspect that has not been considered in previous studies. Chloride profile data obtained from these bridge substructures were utilized. After data preprocessing, machine learning models, including Random Forest (RF), Gradient Boosting Machine (GBM), and K-Nearest Neighbors (KNN), were optimized through hyperparameter tuning. The performance of these models was developed and compared under three different variable sets. The first model uses six variables: water-to-binder (W/B) ratio, cement type, coarse aggregate volume ratio, service life, strength, and exposure environment. The second model excludes the exposure environment, using only the remaining five variables. The third model relies on just three variables: service life, strength, and exposure environment factors that can be obtained from precision safety diagnostics. The results indicate that including the exposure environment significantly enhances model performance for predicting the chloride diffusion coefficient in concrete bridges in marine environments. Additionally, the three variable model demonstrates that effective predictions can be made using only data from precision safety diagnostics.

A study on the risk index for tunnel collapse (터널 붕괴 위험도 지수 연구)

  • Jeong-Heum Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.5
    • /
    • pp.421-433
    • /
    • 2024
  • As the utilization of underground space increases, preventing collapse accidents during tunnel construction has become a significant challenge. This study aims to quantitatively assess the risk of tunnel collapse during construction by analyzing various influencing factors and proposing a tunnel collapse risk index based on these factors. For the 14 major influencing factors affecting tunnel collapse, weights were calculated using the analytic hierarchy process (AHP) method. Data from 27 collapse cases were collected, and Monte Carlo simulation was used to calculate the grade scores for each influencing factor. These scores were then synthesized to derive the tunnel collapse risk index. The average value of the tunnel collapse risk index was analyzed to be 49.359 points. Future comparisons with section-by-section evaluation results of tunnel collapse risk will allow for the assessment of whether a specific section has a lower or higher collapse risk. This study provides a systematic method for quantitatively evaluating the key factors of tunnel collapse risk, thereby contributing to the prevention of collapse accidents during tunnel construction and the establishment of appropriate countermeasures. Future research is expected to enhance the reliability of the tunnel collapse risk index by incorporating more field data and improving the accuracy of tunnel collapse risk assessment based on this index.

Optimal Shear Strength Enhancement using Corrugated CFRP Panel for H beam with Slender Web (세장판 복부를 갖는 H형 보의 파형 CFRP 패널을 이용한 최적 전단보강)

  • Ga-Yoon Park;Min-Hyun Seong;Jin-Kook Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.5
    • /
    • pp.10-19
    • /
    • 2024
  • In this study, FEM analysis was performed with the goal of optimal design of corrugated CFRP panels reinforcing H-shaped beams with slender plate webs. The buckling reinforcement performance of corrugated CFRP panels according to various specifications was evaluated, and in particular, a new reinforcement method was proposed by analyzing the effect of the ratio of vertical reinforcement according to the net height of the abdomen of the H-type beam on the location of the first elastic buckling mode. To minimize the amount of CFRP used, the attachment angle was set to 45 degrees. Furthermore, parameter analysis was performed according to changes in the specifications of the corrugated CFRP panel, and the buckling reinforcement performance of the corrugated CFRP panel was evaluated through the ductility factor. In addition, we attempted to use the material efficiently by simultaneously considering the maximum load and ductility factor along with the volume of the corrugated CFRP panels. It was confirmed that the model with two or three-layer CFRP laminate have a high ductility factor and efficient use of materials, and that the buckling reinforcement performance is predominantly affected by the length and height of the corrugated CFRP panel rather than the width.

Distribution and Statistical Analysis of Discontinuities in Deep Drillcore (심부시추코어를 활용한 불연속면의 분포 특성 및 통계학적 해석)

  • Junghae Choi;Youjin Jung;Dae-Sung Cheon
    • The Journal of Engineering Geology
    • /
    • v.34 no.3
    • /
    • pp.415-427
    • /
    • 2024
  • This study undertook a quantitative analysis of the distribution of fractures in deep drillcore from a Precambrian metamorphic complex on the north face of Hongcheon-gun, Gangwon-do, Korea. The fracture distribution with depth, inclination of fractures, and grain size in the fracture zone were measured and statistical techniques applied to derive probability distributions of fracture intervals. Analysis of the inclination angles of fracture planes showed that sub-horizontal fractures are dominant, and fracture spacing is mainly ≤0.5 m, with a median of 0.09 m, first quartile of 0.04 m, and third quartile of 0.18 m, indicating very dense fracture development. Statistical analysis of joint properties was undertaken with fitting using five probability density functions (double Weibull, exponential, generalized logistic, gamma, and lognormal). The lognormal distribution (sum of squared errors, SSE = 2.80) yielded the best fit based on the sum of residual squares. Quantitative characterization of the fracture characteristics of deep bedrock in the Hongcheon area is important for various geotechnical applications such as groundwater flow modeling, slope stability assessment, and underground structure design. In future studies, it will be necessary to combine in situ stress measurements and geophysical surveys to determine the relationship between fracture development and the local stress field.