• Title/Summary/Keyword: City River

Search Result 647, Processing Time 0.035 seconds

Water Quality and Pollutions of River waters in Gwangju City (광주광역시 하천수의 수질 및 오염)

  • 오강호;고영구
    • Journal of Environmental Science International
    • /
    • v.12 no.3
    • /
    • pp.287-297
    • /
    • 2003
  • To investigate water quality and pollution states of rivers in Gwangju city, total of 30 water samples were taken from the main stream of Yeongsan river, Hwangryong river and Gwangju stream in dry and flood seasons. Physico-chemical characteristics of above streams according to pH-Eh and Piper's diagrams we, typically, assigned to natural river water. In the streams, BOD, COD, T-N and T-P indicating water quality mostly increase toward downstream. Notably, water qualities in area near connection between the Gwangju stream and the main stream of Yeongsan river are polluted over V level in rivers and lakes water quality standard. The pollutions are influenced by lift and agricultural foul waters from Gwangju City and farming areas around upstream branches of the Yeongsan river, reasonably. Besides, heavy metals are below the standard in those streams. So, it is considered that the streams are polluted by not industrial but life/agricultural foul waters.

Re-development of Waterway system in Nihombashi River

  • Ito, Kazumasa
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.2190-2199
    • /
    • 2009
  • Nihombashi is located in the central area of Tokyo, Japan. Tokyo has been the capital in Japan since the Edo period, which started approximately 400 years ago, and has accepted a variety of cultures, human resources, businesses for the last 400 years. This has resulted in building up the present prosperity. The Sumida River, one of the symbols of Tokyo and its tributaries including the Kanda River and the Nihombashi River, flows through the Nihombashi district. The river and tributaries used to benefit to the City of Edo. Due to the economic development and the industrial growth in Tokyo, however, they were polluted and lost their functions. In 1960s, approximately 40 years ago, the Sumida River became so dirty that local citizens kept away from it. The Nihombashi River was covered with an expressway, which was obscuring the river view. Since 1970s, local communities have proposed to rehabilitate rivers in Tokyo successively, and have proceeded with measures for river floods, improvement of sewage systems and construction of water purification facilities. Consequently, the quality of the river water was considerably improved in 1990. The stagnant rivers were turned into ones that local citizens were physically able to come close by. Today, restoring of the environment and the appearance of the city in the old days, Nihombashi district has been proposed as a model city of the future, which is alive with history and culture and harmonizing with rivers. The concept is "To Create, To Reserve, To Restore." This paper introduces a case study of the urban development, in which the local communities and public authorities collaborated with and proposed a brand-new style of the urban city harmonizing with the environment.

  • PDF

Case study on the Chinese polluted river and lake restoration under the sponge city construction

  • Liu, Jian;Yuan, Zhan;Liu, Yan;Wu, Lingyi
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.353-361
    • /
    • 2017
  • In order to improve the urban ecological environment, the central government has developed a series of water pollution control policies and measures since April 2015, and required local governments to complete the work of the polluted river and lake restoration within specified period. Moreover, the polluted river and lake restoration has been selected as a key evaluation indicator of achievements of the sponge city construction implemented since April 2015. This paper describes how to apply the sponge city construction technology to rehabilitate the polluted rivers and lakes through the polluted water treatment project in Xinghan New Area, Hanzhong and the polluted Huaguping River restoration project in Pingshan District, Shenzhen. The experience and lessons of the polluted river and lake restoration are summed up. Some measures to solve existing problems are put forward.

  • PDF

A Study of Analysis of Present Condition and Users' Behavior on Waterfront in Local City -focusing on Nam river, Taewha river, Gumho river- (지방도시 수변공간 이용자 행태 및 현황분석에 관한 연구 -남강, 태화강, 금호강을 중심으로-)

  • Kang, Seok-Jin
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.16 no.1
    • /
    • pp.53-61
    • /
    • 2014
  • The purpose of this study is to analyze present condition and users' behavior on waterfront in local city. To analyze the current physical statues and behavioral issues, 3 cities including Jinju city(Nam river), Ulsan city(Taewha river), and Dae-gu city(Gumho river) has chosen as research areas, the questionnaire and field survey were conducted in research areas focusing on post occupancy evaluation. In this study, it was found that main behaviors of waterfront were rest and exercise and overall satisfactions of waterfront were related to the decision-making for revisitation. However, unsatisfactory physical factors of waterfront were the position and number of facilities related to the behaviors such as rest, exercise, and bicycle riding. Especially, most unsatisfactory factor was the inadequate lighting in respect of intensity of illumination and position although much people had been used each waterfronts at nighttime. In conclusion it was thought that it was necessary to reinforce the program related to culture and leisure such as public performance and to establish infrastructure related to life-time sport and various outdoor exercise for waterfront activation.

Modern Urbanization Process of Ganggyeong during the Japanese Colonial Period, focused on Installation of Urban Infrastructure (일제강점기 도시기반시설의 설치를 통해 본 강경의 도시화 과정)

  • Hyun, Tae-jun;Kim, Ki-Joo;Lee, Yeon-Kyung
    • Journal of architectural history
    • /
    • v.28 no.6
    • /
    • pp.55-65
    • /
    • 2019
  • Ganggyeong, a city which is located at riverside of Geum River, played a role to connect the inland cities and the coastal cities through the Geum river waterway. In Chosun dynasty, Ganggyeong was one of the three major markets in Korea, and at the same time, it was one of the two river docks in Korea. However, after the railway was installed in Korea, railroad was more important than waterway in transporting logistics and in 1911 Honam railroad and Ganggyeong railway station was installed. Thus it was necessary to reorganize urban structure of Ganggyeong city from the traditional river-dock city to modern railroad city. In addition, urban infrastructure to prevent flood damage was needed because Ganggyeong suffered from floods and water shortages every year. Therefore, between 1910s and 1930s large-scale social infrastructures including road, water and sewage system, river bank, floodgate was constructed not only to revitalize the declining city but also to prevent flood damage and water shortages that hinder urban development. The installation of urban infrastructure has enabled the urban expansion and development of Ganggyeong city, and it is still served as a basic urban structure.

Geochemical Investigation of Contaminated River Waters (Part Ⅳ) Fluorine Contents of River Water in Seoul (汚濁河川水의 地球化學的인 硏究 (第Ⅳ報) 서울市內 河川水의 플루오르含量)

  • Lee, Yong Keun;Whang Kyu Ja
    • Journal of the Korean Chemical Society
    • /
    • v.16 no.4
    • /
    • pp.219-228
    • /
    • 1972
  • Geochemical investigation of river waters and reservoirs in Seoul city on fluorine contents were conducted between June in 1969 and February in 1970. Fluorine contents of most river waters and reservoirs in Seoul city were between 0.09 and 0.32 mg/l. It was found that fluorine contents of Han River and rivers running through the outskirt of the city were relatively less than those of the river waters running through the residential areas and the industrial areas. Fluorine contents were less seasonally variable than chlorine ones. Some implications of those results were discussed in detail.

  • PDF

A Development of Real-time Flood Forecasting System for U-City (Ubiquitous 환경의 U-City 홍수예측시스템 개발)

  • Kim, Hyung-Woo
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.181-184
    • /
    • 2007
  • Up to now, a lot of houses, roads and other urban facilities have been damaged by natural disasters such as flash floods and landslides. It is reported that the size and frequency of disasters are growing greatly due to global warming. In order to mitigate such disaster, flood forecasting and alerting systems have been developed for the Han river, Geum river, Nak-dong river and Young-san river. These systems, however, do not help small municipal departments cope with the threat of flood. In this study, a real-time urban flood forecasting service (U-FFS) is developed for ubiquitous computing city which includes small river basins. A test bed is deployed at Tan-cheon in Gyeonggido to verify U-FFS. Wireless sensors such as rainfall gauge and water lever gauge are installed to develop hydrologic forecasting model and CCTV camera systems are also incorporated to capture high definition images of river basins. U-FFS is based on the ANFIS (Adaptive Neuro-Fuzzy Inference System) that is data-driven model and is characterized by its accuracy and adaptability. It is found that U-FFS can forecast the water level of outlet of river basin and provide real-time data through internet during heavy rain. It is revealed that U-FFS can predict the water level of 30 minutes and 1 hour later very accurately. Unlike other hydrologic forecasting model, this newly developed U-FFS has advantages such as its applicability and feasibility. Furthermore, it is expected that U-FFS presented in this study can be applied to ubiquitous computing city (U-City) and/or other cities which have suffered from flood damage for a long time.

  • PDF

Seasonal Variation of Water Quality and Cryptomonads Distribution in Oncheon River (온천천내 수질 및 Cryptomonads 분포의 시기별 변화)

  • Jeong, Tae-Uk;Jeong, Sun-Young;Kim, Min-Jeong;Choi, Yoo-Jeong;Cho, Eun-Jeong;Jeong, Jae-Eun;Seo, Dong-Cheol;Park, Jong-Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.3
    • /
    • pp.177-184
    • /
    • 2022
  • BACKGROUND: Recently, the inflow of nonpoint pollutants into rivers caused by rapid urban and industrialization promotes the proliferation of algae, which causes eutrophication of rivers. This study was conducted to evaluate the seasonal variation of water quality characteristics and cryptomonads growth in the Oncheon River. METHODS AND RESULTS: The water quality and distribution characteristics of cryptomonads in the Oncheon River were investigated monthly for 12 months from January 2021. The cell number of cryptomonads was intensively developed in January-April, and it decreased sharply in the summer with heavy rainfall. In particular, cryptomonads moved to the downstream side of the river depending on the time, and as a result, significant differences were shown for each investigation point. The Korean trophic state index (TsiKO) in Oncheon River was classified as eutrophy all year round, indicating that cryptomonads can grow year-round. Distribution characteristics of cryptomonads in Oncheon River showed high correlations with DO (r=0.678), BOD (r=0.826) and chlorophyll-a (r=0.613) in water. CONCLUSION(S): In order to reduce cryptomonads in the Oncheon River, it is judged that a complex countermeasure considering the residence time, insolation and precipitation along with water quality factors is required.

Monitoring Technology for Flood Forecasting in Urban Area (도시하천방재를 위한 지능형 모니터링에 관한 연구)

  • Kim, Hyung-Woo;Lee, Bum-Gyo
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.405-408
    • /
    • 2008
  • Up to now, a lot of houses, roads and other urban facilities have been damaged by natural disasters such as flash floods and landslides. It is reported that the size and frequency of disasters are growing greatly due to global warming. In order to mitigate such disaster, flood forecasting and alerting systems have been developed for the Han river, Geum river, Nak-dong river and Young-san river. These systems, however, do not help small municipal departments cope with the threat of flood. In this study, a real-time urban flood forecasting service (U-FFS) is developed for ubiquitous computing city which includes small river basins. A test bed is deployed at Tan-cheon in Gyeonggido to verify U-FFS. It is found that U-FFS can forecast the water level of outlet of river basin and provide real-time data through internet during heavy rain. Furthermore, it is expected that U-FFS presented in this study can be applied to ubiquitous computing city (u-City) and/or other cities which have suffered from flood damage for a long time.

  • PDF

Restoration of Iksan Imperial Capital City Structure and Construction Model in Late Baekje from the Point of Ancient Capital City Planning (백제 후기 익산도성 조영계획모델에 대한 도성계획사적 해석)

  • Lee, Kyung-Chan
    • Journal of architectural history
    • /
    • v.24 no.3
    • /
    • pp.31-41
    • /
    • 2015
  • This study aims to draw out planning principles and structure of Iksan imperial capital city in late Baekje, especially in view of the relationship among imperial capital city planning area, skeletal axis and the location of royal castle. With site survey and analysis of historical records, old maps, topographical maps, archeological excavation data, land registration map of 1915, some significant inferences were drawn out. Firstly from the point of topological conditions, the contiguous line of a stratum from Mireuk mountain(彌勒山) to Wangkung-ri castle(王宮里遺蹟) and two waterways made a topological axis of Iksan Imperial capital city. Secondly district of Iksan imperial capital city can be deduced to the inner area north to Kummado soil wall(金馬都土城), south to the confluence of Iksan river(益山川) and Busang river(扶桑川), west to Okum mountain fortress(五金山城) and Galjeon river(葛田川), east to line near to eastern wall of Jesuksa temple(帝釋寺). Iksan ssang-reung(益山雙陵) was located outside western boundary line of capital city. Thirdly axis from Wangkung-ri castle to northern Kummado soil wall made a skeletal axis of city structure. It got through northern lowland along Buk river(北川) between Yonghwa(龍華山) and Mireuk mountain. Fourthly the location of royal palace can be deduced to the north part of the city around Kumma town area along the planning principle of northern royal palace.