• 제목/요약/키워드: Circumferential Mode Number

검색결과 18건 처리시간 0.022초

Sensitivity analysis of circumferential transducer array with T(0,1) mode of pipes

  • Niu, Xudong;Marques, Hugo R.;Chen, Hua-Peng
    • Smart Structures and Systems
    • /
    • 제21권6호
    • /
    • pp.761-776
    • /
    • 2018
  • Guided wave testing is a reliable and safe method for pipeline inspection. In general, guided wave testing employs a circumferential array of piezoelectric transducers to clamp on the pipe circumference. The sensitivity of the operation depends on many factors, including transducer distribution across the circumferential array. This paper presents the sensitivity analysis of transducer array for the circumferential characteristics of guided waves in a pipe using finite element modelling and experimental studies. Various cases are investigated for the outputs of guided waves in the numerical simulations, including the number of transducers per array, transducer excitation variability and variations in transducer spacing. The effect of the dimensions of simulated notches in the pipe is also investigated for different arrangements of the transducer array. The results from the finite element numerical simulations are then compared with the related experimental results. Results show that the numerical outputs agree well with the experimental data, and the guided wave mode T(0,1) presents high sensitivity to the notch size in the circumferential direction, but low sensitivity to the notch size in the axial direction.

Backward and forward rotating of FG ring support cylindrical shells

  • Khadimallah, Mohamed A.;Hussain, Muzamal;Khedher, Khaled Mohamed;Naeem, Muhammad Nawaz;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제37권2호
    • /
    • pp.137-150
    • /
    • 2020
  • In this research work, the analytical rotating vibration for functionally graded shell with ring supports are restricted to some volume fraction laws based on Rayleigh-Ritz technique. The frequencies of functionally grade cylindrical shells have been investigated for the distribution of material composition of material with two kinds of material. Stability of a cylindrical shell depends highly on these aspects of material with ring supports. The frequency behavior is investigated with fraction laws versus circumferential wave number, length-to-radius and height-to-radius ratios. The frequencies are higher for higher values of circumferential wave number. The frequency first increases and gain maximum value with the increase of circumferential wave mode. Moreover, the effect of angular speed is also investigated. It is examined that the backward and forward frequencies increases and decreases on increasing the ratio of height- and length-to-radius ratios.

유체로 채워진 원통형 쉘의 고유진동수에미치는 수위의 영향 (The Effect of Liquid Level on the Natural Frequencies of a Partially Liquid-Filled Circular Cylindrical Shell)

  • 정경훈;이성철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 춘계학술대회 논문집
    • /
    • pp.314-319
    • /
    • 1995
  • The effect of liquid level on the natural frequencies and mode shapes of a partially liquid-filled circular cylindrical shell with various boundary conditions is investigated by means of a theoretical analysis based upon Fourier series expansion method and a finite element analysis using ANSYS computer program. Two dimensional mode shapes of the liquid-coupled shell structure are obtained by the ANSYS finite element analysis and show that the liquid level affect the nodal point movement. It is found that the variation of normalized naturalfrequencies (natural frequencies of liquid-filled shell/antural frequencies ofempty shell) to the liquid level is depend on the axial mode numbers and circumferential wave numbers. Additionally, it is found that the number of variational steps of normalized natural frequencies is identicial to that of axial nodal points of the mode shape.

  • PDF

유체로 채워진 삼중 원통셸의 해석적 진동 특성 평가 (Evaluation of Analytical Vibration Characteristics for Triple Cylindrical Shells Filled with Fluid)

  • 지용관;이영신
    • 한국소음진동공학회논문집
    • /
    • 제12권2호
    • /
    • pp.150-160
    • /
    • 2002
  • The free vibration characteristics of the triple cylindrical shells filled with fluid are investigated. The triple cylindrical shells are filled with compressible fluid. The boundary condition is clamped at both ends. Analytical method is developed to evaluate natural frequencies of triple cylindrical shells using Sanders' shell theory and courier series expansion by Stokes' transformation. Their results are compared with those of finite element method to verify the validation of the method developed. The modal characteristics of shells filled with fluid at region 1, 2 and 3 are evaluated.

일단고정-일단자유 원통 셸의 진동 해석 (Free vibration analysis of clamped free circular cylindrical shells)

  • 임정식
    • 소음진동
    • /
    • 제6권1호
    • /
    • pp.45-56
    • /
    • 1996
  • Frequency equation for clamped-free circular cylindrical thin shell is derived by the application of Rayleigh-Ritz method using the Sanders shell equation. The cubic frequency equation is solved for each axial and circumferential mode number. Integration of the beam characteristic funcitions was performed via Mathematica which results in more accurate integration of the beam functions that affect the accuracy of the frequency. The natural frequencies from this calculation are compared with existing results. It shows that this calculation predicts natural frequencies closer to the test results than existing results.

  • PDF

유입난류와 평판 캐스케이드 상호작용에 따른 광대역 소음 해석을 위한 효율적인 시간영역 수치기법의 개발 (Development of Efficient Numerical Method in Time-domain for Broadband Noise due to Turbulence-cascade Interaction)

  • 김상호;정철웅
    • 한국소음진동공학회논문집
    • /
    • 제19권7호
    • /
    • pp.719-725
    • /
    • 2009
  • An efficient time-domain numerical method for the analysis of broadband noise generation and propagation due to turbulence-cascade interaction is developed. The core algorithm of the present method is based on the B-periodicity of the acoustic response function of the flat-airfoil cascade to the ingesting gust(B denotes the number of airfoils in the cascade). To confirm this periodicity, gust-cascade interaction problem are solved by using the time-domain method, which shows that the incident gust with the circumferential mode number having the same remainders when divided by the airfoil number excites the same acoustic response of the cascade. Using the proposed fast algorithm with this periodicity, we show that the total computation time for the model broadband problem using the total 525 incident gust modes can be reduced to about 1/4 of that taken in using the previous time-domain program.

유입난류와 평판 캐스케이드 상호작용에 따른 광대역 소음 해석을 위한 효율적인 시간영역 수치기법의 개발 (Development of Efficient Numerical Method in Time-domain for Broadband Noise due to Turbulence-cascade Interaction)

  • 김상호;정철웅
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.477-482
    • /
    • 2009
  • An efficient time-domain numerical method for the analysis of broadband noise generation and propagation due to turbulence-cascade interaction is developed. The core algorithm of the present method is based on the B-periodicity of the acoustic response function of the flat-airfoil cascade to the ingesting gust (B denotes the number of airfoils in the cascade). To confirm this periodicity, gust-cascade interaction problem are solved by using the time-domain method, which shows that the incident gust with the circumferential mode number having the same remainders when divided by the airfoil number excites the same acoustic response of the cascade. Using the proposed fast algorithm with this periodicity, we show that the total computation time for the model broadband problem using the total 525 incident gust modes can be reduced to about 1/4 of that taken in using the previous time-domain program.

  • PDF

선형적으로 두께가 변하는 원추형 셸의 진동특성 (Vibration Characteristics of Conical Shells with Linearly Varying Thickness)

  • 여동준;조인순
    • 동력기계공학회지
    • /
    • 제12권2호
    • /
    • pp.35-40
    • /
    • 2008
  • This paper deals with the free vibrations of conical shells with linearly variable thickness by the transfer influence coefficient method. The classical thin shell theory based upon the Flugge theory is assumed and the governing equations of a conical shell are written as a coupled set of first order matrix differential equations using the transfer matrix. The Runge-Kutta-Gill integration method is used to solve the governing differential equation. The natural frequencies and corresponding mode shapes are calculated numerically for the conical shells with linearly variable thickness and various boundary conditions at the edges. The present method is applied to conical shells with linearly varying thickness, and the effects of the semi-vertex angle, the number of circumferential waves and thickness ratio on vibration are studied.

  • PDF

원형 핀이 부착된 실린더 주위의 유체 유동에 관한 수치적 연구 (A Numerical Study on the Fluid Flow Past a Cylinder with a Periodic Array of Circular Fins)

  • 이동혁;하만영
    • 대한기계학회논문집B
    • /
    • 제29권12호
    • /
    • pp.1344-1351
    • /
    • 2005
  • Three-dimensional, time-dependent solutions of fluid flow past a circular cylinder with a periodic array of circular fins are obtained using an accurate and efficient spectral multidomain methodology. A Fourier expansion with a corresponding uniform grid is used along the circumferential direction. A spectral multidomain method with Chebyshev collocation is used along the r-z plane to handle the periodic array of circular fins attached to the surface of the cylinder. Unlike the flow past a circular cylinder, Second instabilities like mode A and mode B are not found in the Reynolds number range $100\~500$. It is found that three-dimensional instability of vortical structures is suppressed due to the presence of fin. The present numerical solutions report the detailed information of flow quantities near wake of finned cylinder.

Experimental investigation of a method for diagnosing wall thinning in an artificially thinned carbon steel elbow based on changes in modal characteristics

  • Byunyoung Chung ;Jonghwan Kim ;Daesic Jang;Sunjin Kim;Youngchul Choi
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.947-957
    • /
    • 2023
  • Curved cylindrical structures such as elbows have a non-uniform thickness distribution due to their fabrication process, and as a result have a number of complex mode shapes, including circumferential and axial nodal patterns. In nuclear power plants, material degradation is induced in pipes by flow accelerated erosion and corrosion, causing the wall thickness of carbon steel elbows to gradually thin. The corresponding frequencies of each mode shape vary according to the wall thinning state. Therefore, the thinning state can be estimated by monitoring the varying modal characteristics of the elbow. This study investigated the varying modal characteristics of artificially thinned carbon steel elbows for each thinning state using numerical simulation and experimental methods (MRIT, Multiple Reference Impact Test). The natural frequencies of specified mode shapes were extracted, and results confirmed they linearly decreased with increasing thinning. In addition, by comparing single FRF (Frequency Response Function) data with the results of MRIT, a concise and cost effective thinning estimation method was suggested.