• 제목/요약/키워드: Circumferential Groove

Search Result 26, Processing Time 0.018 seconds

Suppression of Cavitation Instabilities in an Inducer by Circumferential Groove and Explanation of Higher Frequency Components

  • Kang, Dong-Hyuk;Arimoto, Yusuke;Yonezawa, Koichi;Horiguchi, Hironori;Kawata, Yutaka;Hah, Chunill;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.2
    • /
    • pp.137-149
    • /
    • 2010
  • The purpose of the present research is to suppress cavitation instabilities by using a circumferential groove. The circumferential groove was designed based on CFD so that the tip leakage vortex is trapped by the groove and does not interact with the next blade. Experimental results show that the groove can suppress rotating cavitation, asymmetric cavitation and cavitation surge. However, weak instabilities with higher frequency could not be suppressed by the groove. From the analysis of pressure pattern similar to that for rotor-stator interaction, it was found that the higher frequency components are caused by the interaction of backflow vortices with the inducer blades.

Leakage Characteristic of Angled-Circumferential-Groove-Pump Seal with CFD Analysis (각이 진 평행 홈 펌프 실의 누설량 특성 해석)

  • Choi, Bok-Sung;Ha, Tae-Woong
    • Tribology and Lubricants
    • /
    • v.25 no.2
    • /
    • pp.96-101
    • /
    • 2009
  • In order to improve leakage characteristic, angled-circumferential-groove pump seal is suggested. CFD analysis using FLUENT has been performed to predict leakage and determine an optimum slanted-groove angle $\alpha$ which yields the best leakage reduction. The optimum value of $\alpha$ ranges from $45^{\circ}$ to $60^{\circ}$ and depends on the pressure difference of seal and number of grooves for the same groove geometry. The maximum leakage reduction ratio increases as increasing the pressure difference of angled-circumferential-groove pump seal with the optimum value of $\alpha$.

A Study on the Circumferential Groove Effects on the Minimum Oil Film Thickness in Engine Bearings

  • Cho, Myung-Rae;Shin, Hung-Ju;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.7
    • /
    • pp.737-743
    • /
    • 2000
  • This paper presents the effects of circumferential groove on the minimum oil film thickness in engine bearings. The fluid film pressures are calculated by using the infinitely short bearing theory for the convenience of analysis. Journal locus analysis is performed by using the mobility method. A comparison of minimum oil film thickness of grooved and ungrooved bearing is presented. It is found that circumferential $360^{\circ}$ groove only reduces the absolute magnitude of the oil film thickness, but $180^{\circ}$ half groove affects the shape of film thickness curve and position of minimum oil film thickness.

  • PDF

Improvement on Prediction of Circumferential-Groove-Pump Seal with CFD Analysis (CFD를 사용한 평행 홈 펌프 시일의 해석 개선)

  • Ha, Tae-Woong
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.291-296
    • /
    • 2008
  • In order to improve the leakage prediction and rotordynamic analysis of an annular seal with a smooth rotor and circumferentially grooved stator, CFD analysis using FLUENT has been performed to determine the groove penetration angle a which is the angle of separation line between control volumes II and III in groove section of Ha and Lee's three-control-volume theory. Validation to the present analysis using new penetration angle determined by the CFD analysis is achieved by comparisons with the results of published Ha and Lee's analysis. For the leakage prediction the present analysis shows slight improvement and CFD results yields the best. Direct damping and cross-coupled stiffness coefficients are predicted better to the experimental ones. However, direct stiffness coefficient is predicted worse.

Mismatch Limit Load Analyses for V-groove Welded Pipe with Through-wall Circumferential Defect in Centre of Weld (원주방향 관통균열이 용접부 중앙에 존재하는 V-그루브 맞대기 용접배관의 한계하중 해석)

  • Kim, Sang-Hyun;Han, Jae-Jun;Chung, Jin-Taek;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.11
    • /
    • pp.1379-1386
    • /
    • 2013
  • The present work reports the mismatch limit loads for a V-groove welded pipe for a circumferential crack using finite element (FE) analyses. To integrate the effect of groove angles on mismatch limit loads, one geometry-related slenderness parameter was modified by relevant geometric parameters including the groove angle, crack depth, and root opening based on plastic deformation patterns in the theory of plasticity. Circumferential through-wall cracks are located at the centre of the weldments with two different groove angles ($45^{\circ}$, $90^{\circ}$). With regard to the loading conditions, axial (longitudinal) tension and bending are applied for all cases. For the parent and weld metal, elastic-perfectly plastic materials are considered to simulate and analyze under- and over-matching conditions in plasticity. The overall results from the proposed solutions are found to be similar to the FE results.

Analysis of the Air Journal Bearings with Two Circumferential Grooves (2열 원주 그루브 급기 저어널 공기베어링의 해석)

  • 박상신;안유민;한동철
    • Tribology and Lubricants
    • /
    • v.13 no.4
    • /
    • pp.40-46
    • /
    • 1997
  • The externally pressurized air journal bearings which have two circumferential grooves with inherently compensated restrictors are analyzed. Two circumferential grooves with restrictors are made on the bearing surface in order to increase the stiffness and damping coefficients. In this paper, the dynamic characteristics such as stiffness and damping coefficients of this type of bearings are calculated. As a result of theoretical analysis, it is verified that there exist the groove depth and the distance between two grooves which generate the maximum stiffness at the given bearing dimensions.

Lubrication Analysis of Hydraulic Spool Valve with Groove Cross Sectional Shapes (Groove 단면형상에 따른 유압 Spool Valve의 윤활해석)

  • Park, Tae-Jo;Hwang, Yun-Geon
    • Tribology and Lubricants
    • /
    • v.25 no.1
    • /
    • pp.13-19
    • /
    • 2009
  • The spools in most hydraulic spool type control valve have several circumferential grooves to pre-vent well known hydraulic locking problems which result in high friction force and excessive wear. In this paper, a commercial computational fluid dynamics (CFD) code, FLUENT is used to investigate the flow and lubrication characteristics of grooved hydraulic spool valve. The stream lines and pressure distributions are obtained for various groove cross sectional shapes and film thicknesses. The stream lines are highly affected by groove cross sectional shape but pressure distributions mainly depend on the film shape and its magnitude. Therefore the numerical method adopted in this paper and results can be use in designing of various grooved spool valve.

Analysis of the Conical Air Bearings with two Circumferential Grooves (2 열 원주 그루브 급기 원추형 공기베어링의 해석)

  • 김성균;박상신;김우정;한동철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1993.12a
    • /
    • pp.51-56
    • /
    • 1993
  • The conical bearing can be used to support the radial and thrust load simultaneously. Two circumferential grooves with discrete hole restrictions are made on the bearing surface in order to increase stiffness. In this paper, the dynamic characteristics of this type of bearings are calculated such as stiffness and champing coefficients. As a results of theoretical analysis, it is verified that there exist the groove depth and distance between two grooves which produce the maximum stiffness at the given bearing dimensions.

  • PDF

Analysis of the Conical Air Bearings with two Circumferential Grooves (2열 원주 그루브 급기 원추형 공기베어링의 해석)

  • 김성균;박상신;한동철
    • Tribology and Lubricants
    • /
    • v.10 no.1
    • /
    • pp.56-61
    • /
    • 1994
  • The conical bearing can be used to support the radial and thrust load simultaneously. Two circumferential grooves with discrete hole restrictions are made on the bearing surface in order to increase stiffness. In this paper, the dynamic characteristics of this type of bearings are calculated such as stiffness and damping coefficients. As a results of theoretical analysis, it is verified that there exist the groove depth and distance between two grooves which produce the maximum stiffness at the given bearing dimensions.

Analysis of Crank Pin Bearing with Various Inlet Groove Shape for Marine Engine (급유구의 형상에 따른 박용엔진 크랭크 핀 베어링의 윤활특성 해석)

  • 하양협;이득우;김정훈;이성우
    • Tribology and Lubricants
    • /
    • v.14 no.3
    • /
    • pp.87-93
    • /
    • 1998
  • Crank pin bearing in two-stroke marine diesel engine is operated under quite severe conditions since the elements are big and heavy and the sliding speed is very slow. Therefore it is very difficult to form oil film. In this paper, two types of bearings with different groove shape are compared. One has circumferential oil groove at lower position and the other has lengthwise oil groove at upper position. Bearing clearance, oil inlet pressure and length to diameter ratio are selected as design parameters. Locus of journal center and minimum oil film thickness are investigated to compare two cases.