• 제목/요약/키워드: Circulation Pump

Search Result 225, Processing Time 0.027 seconds

Mixed Flow and Oxygen Transfer Characteristics of Vertical Orifice Ejector (수직 오리피스 이젝터의 혼합유동 및 산소전달 특성)

  • Kim, Dong Jun;Park, Sang Kyoo;Yang, Hei Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.61-69
    • /
    • 2015
  • The objective of this study is to experimentally investigate the mixed flow behaviors and oxygen transfer characteristics of a vertical orifice ejector. The experimental apparatus consisted of an electric motor-pump, an orifice ejector, a circulation water tank, an air compressor, a high speed camera unit and control or measurement accessories. The mass ratio was calculated using the measured primary flow rate and suction air flow rate with experimental parameters. The visualization images of vertically injected mixed jet issuing from the orifice ejector were qualitatively analyzed. The volumetric oxygen transfer coefficient was calculated using the measured dissolved oxygen concentration. At a constant primary flow rate, the mass ratio and oxygen transfer coefficient increase with the air pressure of compressor. At a constant air pressure of the compressor, the mass ratio decreases and the oxygen transfer coefficient increases as the primary flow rate increases. The residence time and dispersion of fine air bubbles and the penetration of mixed flow were found to be important parameters for the oxygen transfer rate owing to the contact area and time of two phases.

Performance of Heat Recovery System using Evaporative Cooling (증발냉각을 이용한 배기열 회수장치의 성능에 관한 연구)

  • Yoo, Seong Yeon;Kim, Tae Ho;Kim, Myung Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.37-43
    • /
    • 2015
  • Evaporative cooling is a very effective way for exhaust heat recovery that uses both latent heat and sensible heat. This study investigated the performance of a heat recovery system using evaporative cooling. The experimental apparatus comprised a plastic heat exchanger, a water spray nozzle, an air blowing fan, a water circulation pump, and measuring sensors for the temperature, humidity, and flow rate. The effectiveness of the sensible heat recovery without evaporation was measured and compared with that of the total heat recovery with evaporation. The effectiveness of the sensible and total heat recoveries decreased as the air flow rate increased, and a much higher effectiveness was obtained with the counterflow arrangement in both cases. For total heat recovery, the effectiveness increased with the water flow rate, and the parallel flow arrangement was found to be more sensitive to the water flow rate than the counterflow arrangement.

A Clinical Evaluatuin on Open Heart Surgery of Congenital and Acquired Heart Disease (선천성 및 후천성 심질환의 개심술)

  • 김근호
    • Journal of Chest Surgery
    • /
    • v.12 no.1
    • /
    • pp.33-42
    • /
    • 1979
  • The present study reports 41 cases of congenital and acquired heart diseases, who received open heart surgery under extracorporeal circulation [ECC] by Sarns Heart-Lung-Machine [HLM] at the Department of Thoracic and Cardiovascular Surgery, Hanyang University Hospital during the` period between July 1975 and February 1979. The priming of pump oxygenator was carried out by the hemodilution method using Hartman`s solution, whole blood, and fresh human plasma. The rate of hemodilution was in the average of 50.8 ml/kg. ECC was performed at the average perfusion flow rate of 85.0 ml/kg/min [2.43 L./ kg/2] and at moderate hypothermia. In the total cardiopulmonary bypass, arterial pressure ranged between 55 mmHg and 90 mmHg, but generally maintaining over 70 mmHg. Patient age ranged between 2 and 54 year old, in congenital heart diseases, between 2 and 28, in acquired heart diseases, between 17 and 54 Sex ratio of male to female was 20:21. The cases include a case of pulmonary valvular stenosis, 4 cases of atrial septal defect, 9 cases of ventricular septal defect, 9 cases of tetralogy of Fallot, 5 cases of pentalogy of Fallot, 3 cases of atypical multiple anomalies 7 cases of mitral stenosis or insufficiency, a case of myxoma in left atrium, and a case of ruptured aneurysm of Valsalva`s sinus. The surgical managements were 16 valvulotomy for pulmonary valvular stenosis, 2 Teflon patch graft closure and 5 simple suture closure of atrial septal defect, 16 Teflon patch graft closure and 5 simple suture closure of ventricular septal defect, 12 pericardial patch graft for infundibular stenosis of right ventricle, one anastomosis between left superior vena cava and right atrium, 2 open mitral commissurotomy, 5 mitral valve replacement using Starr-Edward`s ball valve, porcine xenograft by Hancock, by Carpentier-Edward, or Angell-Shiley, one removal of left atrial myxoma, and a repair of ruptured aneurysm of Valsalva`s sinus. Four [9.7%] out 41 cases expired postoperatively and the rest of 37 cases survived with satisfactory results. The causes of death were one coronary embolism in tetralogy of Fallot, 2 postoperative lower cardiac output in atypical multiple anomalies, and one right heart failure in large: ventricular septal defect with pulmonary hypertension.

  • PDF

Surgical Repair of Secundum Type Atrial Septal Defects Using Extracorporeal Circulation in 48 Patients (심방중격 결손증의 외과적 완전교정 48례 보고)

  • 서경필
    • Journal of Chest Surgery
    • /
    • v.10 no.2
    • /
    • pp.268-273
    • /
    • 1977
  • During the period from March, 1963, to November, 1977, forty-eight patients with secundum type atrial septal defects have undergone surgical repair using cardiopulmonary bypass with a pump oxygenator at the Seoul National University Hospital. Twenty-six [55 percent] of the patients were females and Twenty-two [45 percent] were males. The patients varied in age from 3 years to 51 years. We have divided secundum defects into three types. These are: 1] the high defect; 2] Ovale type defect; and 3] low defect including the defect in the area of the coronary sinus. An ovale type defect was present in forty-one cases [85 percent]. Partial anomalous pulmonary venous connections were present in two patients in the high defect group. All of the forty-eight patients had had right heart catheterization before operation. The pulmonary to systemic flow ratio [Qp/Qs] was determined in our 38 patients. The Qp/Qs was less than 1.5/1 in only five of the 38 patients. Among the 33 patients with moderate and severe left-to-right shunts [Qp/Qs 1.6-3.5/1], the systolic pulmonary artery pressures. ranged from 30 to 80 mm Hg. Large left-to-right shunts [Qp/Qs>3.6/1] were present in 13 patients. The postoperative complications occurred in 13 patients [27. 1 percent]. Postoperative wound infections were the most frequent complications being present in 6 patients [12.5%]. Forty-six of the patients with secundum atrial septal defects survived surgical repair of their defects. Thus the hospital mortality of surgery was 4.2 percent. The causes of death in the early postoperative period were: 1] low cardiac output syndrome related to severe pulmonary hypertension in one case; and 2] postoperative several bleeding in one case.

  • PDF

Three-Dimensional Flow Visualization for the Steady and Pulsatile Flows in a Branching Model using the High-Resolution PIV System

  • Suh, Sang-Ho;Roh, Hyung-Woon
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.2 no.2
    • /
    • pp.27-32
    • /
    • 2004
  • The objective of the present study is to visualize the steady and pulsatile flow fields in a branching model by using a high-resolution PIV system. A bifurcated flow system was built for the experiments in the steady and pulsatile flows. Harvard pulsatile pump was used to generate the pulsatile velocity waveforms. Conifer powder as the tracing particles was added to water to visualize the flow fields. CCD cameras($1K{\times}1K$(high resolution camera) and $640{\times}480$(low resolution camera)) captured two consecutive particle images at once for the image processing of several cross sections on the flow system. The range validation method and the area interpolation method were used to obtain the final velocity vectors with high accuracy. The results of the image processing clearly showed the recirculation zones and the formation of the paired secondary flows from the distal to the apex of the branch flow in the bifurcated model. The results also indicated that the particle velocities at the inner wall moved faster than the velocities at the outer wall due to the inertial force effects and the helical motions generated in the branch flows as the flow proceeded toward the outer wall. Even though the PIV images from the high resolution camera were closer to the simulation results than the images from the low resolution camera at some locations, both results of the PIV experiments from the two cameras generally agreed quite well with the results from the computer simulations. Therefore, instead of using the expensive stereoscopic PIV or 3D PIV system, the three-dimensional flow fields in a bifurcated model could be easily and exactly investigated by this study.

  • PDF

Development of 1.2kW LED Light with Water-Air Circulation (수공냉 대류방식을 이용한 1.2kW급 LED 조명등 개발)

  • Yoon, Byung-Woo;Song, Jong-Kwan;Park, Jang-Sik;Kwon, Hong-Bae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.5
    • /
    • pp.615-622
    • /
    • 2015
  • As the development of high efficiency and high flux density LEDs, the trend of illumination lamp industry transfers from conventional-lamps to the LED-lamps. For energy efficiencies, LED lamps are superior to the conventional lamps, but they have heat problems. Especially, the heat problems are severe for the high luminance lamps. They degrade the soldering point of the metal PCB, and shorten the life cycle of LEDs. So, the solution of the heat sinking is very important to develop high luminance LED lamps. This study suggested a new method to solve the heat problems for high luminance LED lamps, and developed a LED lamp which has 1200W power. In this study, a water jacket is installed to the LED lamp, and the cooing water is circulated by a water pump.

Flow Characteristics of Central-Driven Ejector with Design Parameters (중앙구동 이젝터의 설계변수에 따른 유동특성)

  • Park, Sang Kyoo;Yang, Hei Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.8
    • /
    • pp.645-651
    • /
    • 2015
  • The objective of this study is to experimentally investigate the effect of design parameter on the mass ratio of a central-driven ejector. The design parameters are the primary nozzle area and distance ratios, diffuser exit-area ratio and mixing-tube length ratio. The experimental setup was an open-loop continuous circulation system which has a movable nozzle ejector, an electric motor-pump, a water tank, a control panel and high-speed camera unit. We calculated the mass ratio using the measured primary and suction-flow rates with the experimental parameter of primary water-flow rate or pressure. The results showed that the mass ratio increased with the primary nozzle distance ratio and mixing tube length ratio, while the mass ratio decreased with the primary nozzle-area ratio and diffuser exit-area ratio.

An Experimental Study on the Cause of Signal Inhomogeneity for Magnetic Resonance Angiography Using Phantom Model of Anterior Communicating(A-com) Artery (전교통동맥 모형을 이용한 자기공명혈관촬영술의 신호 불균일에 관한 실험적 연구)

  • Yoo, Beong-Gyu;Chung, Tae-Sub
    • Journal of radiological science and technology
    • /
    • v.25 no.1
    • /
    • pp.55-62
    • /
    • 2002
  • Aneurysm-mimicking findings were frequently visualized due to hemodynamical causes of dephasing effects around area of A-com artery during magnetic resonance angiography(MRA) and these kind of phenomena have not been clearly known yet. We investigated the hemodynamical patterns of dephasing effect around area of the A-com artery that might be a cause of false intracranial aneurysms on MRA. For experimental study, We used hand-made silicon phantoms of the asymmetric A-com artery as like a bifurcation configuration. In a closed circulatory system with UHDC computer driven cardiac pump system. MRA and fast digital subfraction angiography(DSA) involved the use of these phantoms. Flow patterns were evaluated with axial and coronal imaging of MRA(2D-TOF, 3D-TOF) and DSA of Phantoms constructed from an automated closed-type circulatory system filled with glycerol solution [circulation fluid(glycerol:water = 1:1.4)]. These findings were then compared with those obtained from computational fluid dynamic(CFD) for inter-experimental correlation study. Imaging findings of MRA, DSA and CFD on inflow zone according to the following: a) MRA demonstrated high signal intensity zone as inflow zone on silicon phantom; b) Patterns of DSA were well matched with MRA on trajectory of inflow zone; and c) CFD were well matched with MRA on the pattern of main flow. Imaging findings of MRA. DSA and CFD on turbulent flow zone according to the following: a) MRA demonstrated hyposignal intensity zone at shoulder and axillar zone of main inflow; b) DSA delineated prominent vortex flow at the same area. The hemodynamical causes of signal defect, which could Induce the false aneurysm on MRA, turned out to be dephasing effects at axilla area of bifurcation from turbulent flow as the results of MRA, DSA and CFD.

  • PDF

Effect of Electrolyte Flow Rates on the Performance of Vanadium Redox Flow Battery (바나듐레독스흐름전지 전해질 유량에 따른 성능변화)

  • LEE, KEON JOO;KIM, SUNHOE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.4
    • /
    • pp.324-330
    • /
    • 2015
  • The electrolyte flow rates of vanadium redox flow battery play very important role in terms of ion transfer to electrolyte, kinetics and pump efficiency in system. In this paper a vanadium redox flow battery single cell was tested to suggest the optimization criteria of electrolyte flow rates on the efficiencies. The compared electrolyte circulation flow rates in this experimental work were 15, 30 and 45 mL/min. The charge/discharge characteristics of the flow rate of 30 mL/min was the best out of all flow rates in terms of charging and discharging time. The current efficiencies, voltage efficiencies and energy efficiencies at the flow rate of 30 mL/min were the best. The IR losses obtained at thd current density of $40mA/cm^2$, at the flow rates of 15, 30 and 45 mL/min were 0.085 V, 0.042 V and 0.115 V, respectively. The charge efficiencies at the current density of $40mA/cm^2$ were 96.42%, 96.45% and 96.29% for the electrolyte flow rates of 15, 30 and 45 mL/min, respectively. The voltge efficiencies at the current density of $40mA/cm^2$ were 77.34%, 80.62% and 76.10% for the electrolyte flow rates of 15, 30 and 45 mL/min, respectively. Finally, the energy efficiencies at the current density of $40mA/cm^2$ were 74.57%, 77.76% and 73.27% for the electrolyte flow rates of 15, 30 and 45 mL/min, respectively. The optimum flow rates of electrolytes were 20 mL/min in most of operating variables of vanadium redox flow battery.

Development of Cold Chain System Using Thermal Storage with Low-Energy Type (저 에너지형 축냉식 저온유통 시스템 개발)

  • Kwon K.H.;Jeong J.W.;Kim J.H.;Choi C.H.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.3 s.116
    • /
    • pp.161-167
    • /
    • 2006
  • The purpose of this study is to find the optimal conditions of PCM slurry manufacturing equipment for saving the marketing cost and keeping the original quality of products. In addition, the characteristics of the movable container for shipping or distributing products is analysed. The major results are as follows. 1. PCM thermal storage system is designed with the conditions of temperature($-5{\sim}10^{\circ}C$), cold chain time(30 minutes), and one time usage(50 liter). This system includes tank, freezer, circulating pump, cycle type heat exchanger, swelling tank, equipment of supplying PCM supplying unit includes cold tank, cycle type heat exchanger, suction unit and control equipments, etc. 2. After ability test of PCM thermal storage system, it shows that the required freezing time of PCM thermal storage system is less than one of the previous system. The reason is that churn (top and bottom) and compulsion circulation are occurred simultaneously and unit cooler type method is better than chiller type method. 3. By the experiment of transportation latent heat container, it is decided that the best container is $K_1$ with latent heat temperature($0{\sim}5^{\circ}C$) and density(0.15%). However, for $K_l\;and\;K_2$, it is necessary more studies on latent heat thermal conditions and conditions of making method.