• Title/Summary/Keyword: Circulating

Search Result 1,832, Processing Time 0.027 seconds

Bubble Wake Measurement by Acoustic Bubble Spectrometer Generated by Planing Hull at Circulating Water Channel (회류수조에서의 ABS에 의한 활주선 후류 기포항적계측)

  • Shin, Myung-Soo;Moon, Il-Sung;Nah, Young-In;Park, Jong-Chun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.55-61
    • /
    • 2011
  • This paper presents bubble wake measurement results generated by the planing hull. The bubble was generated by SNAME TMB model(No. 4876) with hard chine at the CWC(Circulating Water Channel). ABS(Acoustic Bubble Spectrometer) was used to measure bubble wake measurement. The manufactured model is one meter in length and uniform velocity to generate the bubble at CWC is 3m/s, relatively higher speed than conventional hull form. Measurements were performed successfully and measured results show well the general characteristics of bubble wake generated by planing hull. Furthermore, experimental equations are proposed for the practical use.

Comparative Evaluation of Thermal Design Parameters of Different Sizes of Circulating Fluidized Bed Boiler (규모별 순환유동상 보일러의 열설계 변수 비교 평가)

  • Kim, Tae-Hyun;Choi, Sang-Min
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.4
    • /
    • pp.16-22
    • /
    • 2011
  • The present paper discusses thermal design parameters of different sizes of circulating fluidized bed (CFB) boilers with capacities ranging from 2 MWe pilot scale boiler to a 600 MWe utility boiler. Physical boiler size and shape of furnace were identified and dimensional data have been summarized. By performing thermal design for each of the boilers, heat transfer surface area, furnace shape and size, and allocation of heat transfer surface for water-steam side heat absorption have been recalculated, and presented. Although boilers may have significantly different capacity, the facilities have common design parameters, when they are evaluated as basic thermal design processes. The significance of thermal design procedure is explicitly discussed.

Control Strategy of MMC-HVDC under Unbalanced Grid Voltage Conditions

  • Zhang, Jianpo;Zhao, Chengyong
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1499-1507
    • /
    • 2015
  • High voltage direct current transmission based on modular multilevel converter (MMC-HVDC) is one of the most promising power transmission technologies. In this study, the mathematical characteristics of MMC-HVDC are analyzed in a synchronous rotational reference frame. A hybrid current vector controller based on proportional integer plus resonant is used to uniformly control the DC and double-base frequency AC currents under unbalanced grid voltage conditions. A corresponding voltage dependent current order limiter is then designed to solve the overcurrent problems that may occur. Moreover, the circulating current sequence components are thoroughly examined and controlled using a developed circulating current suppressor. Simulation results verify the correctness and effectiveness of the proposed control schemes.

Study on fluid flow characteristics of aquarium for optimum environment (최적 양식환경을 위한 수조식 양식장내의 유동특성에 관한 연구)

  • 정효민;정한식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.1
    • /
    • pp.108-117
    • /
    • 1998
  • This study was performed to analyze the fluid flow characteristics and the temperature distribution of the aquarium for fish breeding. In this study, the finite volume method and turbulence k-$\varepsilon$ model with the SIMPLE computational algorithm are used to study the water flow in the aquarium. The calculation parameters are the circulating flow rate and the basin depth, and the experiments were carried out for the water flow visualization This numerical analysis gives reasonable velocity distributions in good agreement with the experimental data. As the results of the three dimmentional simulations, the sectional mean velocity increased as the sectional mean temperature increases for constant basin depth, and the mean velocity increased more rapidly for small basin depth than that of large basin depth, The mean velocity and temperature can be expressed as the function of the circulating flow rates and the basin depth.

  • PDF

Analysis of Sheath Circulating Current in Underground Transmission Power Cables according to Unbalanced Factor (불평형 요소 변화에 따른 지중 송전선로의 시스순환전류 분석)

  • Choi, Soo-Hyun;Kim, Kyu-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.294-295
    • /
    • 2015
  • Many unbalanced factors of underground transmission power cable, such as burying types and the length difference of the cable between each minor section, etc will cause the impedance unbalance and excessive circulating current between cables. So this paper presents the analysis of sheath circulating current in accordance with the distance between the center conductors and phase arrangement. ground resistance value changes on 154kV transmission system. Based on these simulation results, this paper will contribute to the reduction method of sheath circulation current.

  • PDF

A Study on the Protection Methods of Sheath Circulating Current Reduction Device in Transient State (과도상태에서의 시스순환전류 저감장치 보호방안에 관한 연구)

  • Kang, Ji-Won;Jung, Chae-Kyun;Lee, Jong-Beom;Lee, Dong-Il;Jung, Gil-Jo
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.53-58
    • /
    • 2002
  • Sheath circulating current is increased as the change of sheath mutual impedance which is caused by imbalance of cable system, and different section length between joint box. If excessive current flows in sheath. sheath loss will be increased and then transmission capacity of underground transmission system is reduced. Accordingly, This paper proposed sheath current reduction device using resistor and reactor and proved the reduction effect of that device using EMTP/ATP. And also in this paper, when transients are occurred at the underground system with reduction device by ground fault and lightning surge. we analyzes transient effect of system variously. From this result. authors establish the protection methods of sheath circulating current reduction device.

  • PDF

Development of 3MWth Circulating Fluidized Bed Biomass Gasifier (3MWth급 순환유동층 바이오매스 가스화공정 개발)

  • Lee, Jeungwoo;Song, Jaehun;Lee, Dongyoon;Choi, Youngtai;Yang, Won;Lee, Uendo
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.231-233
    • /
    • 2012
  • Circulating Fluidized Bed (CFB) is a technically and economically proven technology for boiler systems and large CFB coal boilers are making inroads into the domestic power boiler market. For biomass gasification, it is also considered as a very promising technology for commercial. Due to the lack of experiences of a large scale CFB gasifier, however, any large scale CFB gasifiers are hard to in Korea in spite of fast-growing demand of domestic market. In this study, a 3 $MW_{th}$ CFB gasifier was developed for biomass gasification. The CFB gasifier consists of interconnected fast and bubbling fluidized bed reactors including unique features for in-situ tar removal. Various numerical and experimental approaches will be presented such as basic modeling works, investigation of hydrodynamics with a cold model, computational particle fluid dynamics and experiments in the 3 MWth gasifier.

  • PDF

Immune Suppression and Stimulation of Antioxidants II -Effect of Propyl gallate on Murine Cell Mediated Immune Functions- (항산화제의 면역억제 및 항진연구 II - 항산화제인 Propyl gallate가 세포 면역기능에 미치는 영향 -)

  • 유충규;황미경
    • Journal of Food Hygiene and Safety
    • /
    • v.5 no.1
    • /
    • pp.41-48
    • /
    • 1990
  • Propyl gallate used as an antioxidant was examined for its effects on murine immune system. As immunotoxicology assay parameters, we adopted circulating leukocytes and immunoorgan weights for pathotoxicology, delayed hypersensitivity and colloidal carbon clearance for cell mediated immuntity. Propyl gallate's effects were observed as follows; 1) Propyl gallate decreased circulating leukocyte counts, dose dependently. 2) Propyl gallate decreased delayed hypersensitivity reaction. 3) Phagocytic index were similar in the test and control groups.

  • PDF

Study on The Measurement of Corrosion Product Concentration in The Feed Water System of A Power Plant (발전소 급수계통 부식생성물 농도 측정에 관한 연구)

  • Moon, Jeon Soo;Lee, Jae Kun
    • Corrosion Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.151-155
    • /
    • 2011
  • The iron oxide particles could be resulted from the corrosion of the circulating water system of a power plant. Because it may be one of the trouble materials which affect the power generation efficiency due to the deposition on steam generator tube and turbine blade, the continuous observation of its concentration is very important. The laser induced break-down detection (LIBD) technology was applied to monitor continuously the concentration of corrosion products with the detection limit of ppb level. The measurement system consists of a Nd:YAG pulsed laser, a polarizing beam splitter, a flow-type sample cell, an acoustic emission sensor, a high speed data acquisition board, a personal computer, etc.. The performance test results confirmed that this technology can be effective to monitor the corrosion product concentration of the circulating water system of a power plant.

Thermal Analysis Associated with the Application of Pipte Cooling System to a massive Concrete Structure (매스콘크리트 구조물에서 파이프쿨링을 고려한 수화열 해석)

  • 김상철;이두재;김재권;강석화;김진근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.922-927
    • /
    • 1998
  • Pipe cooling has been popularly used in the mass concreting work to reduce temperature of the structure since it is known to be the easiest way to apply and has been the customary usage. But wrong application of the system results in the harmful effect on the structure by crack formation due to thermal shocks and improper cooling schemes. Thus, this study aims at the suppling of effective cooling methods through parametric study. For this, circulating method, velocity of water supply and circulating duration were selected as critical factors affecting the effectiveness of cooling system. As a results of thermal analysis, it was found that too much thermal gradient in the vicinity of the pipe creates localized radial or circumferential cracks. The duration of circulating cooling may be recommended to be as short as several days which may safely reduce the concrete temperature to below a final stable value. It was also found that pipe cooling is more effective to decrease the degree external restraints than internal one.

  • PDF