• 제목/요약/키워드: Circular and non-circular pad

검색결과 4건 처리시간 0.017초

BGA 솔더링에서 패드 형상이 자기정렬에 미치는 영향 (Influence of Pad Shape on Self-Alignment in BGA Soldering)

  • 안도현;정용진;유중돈;김용석
    • Journal of Welding and Joining
    • /
    • 제21권4호
    • /
    • pp.87-91
    • /
    • 2003
  • Effects of the circular and non-circular pad shapes on self-alignment in BGA soldering are predicted using Surface Evolver, and the calculated results are compared with experimental data. While the pad shape has minor effects on self-alignment in the vertical direction, self-alignment in the lateral direction depends on the pad direction and length ratio of the non-circular pad. Larger restoring force is obtained in the minor-axis direction than the major-axis direction, which suggests a possibility of reducing misalignment in the specific direction. The restoring force of the circular pad is between those of the non-circular pad in the major and minor-axis directions. The calculated results of Surface Evolver show reasonably good agreements with experimental data using the shear loading system.

The Effect of Mechanical Properties of Polishing Pads on Oxide CMP(Chemical Mechanical Planarization)

  • Hong, Yi-Koan;Eom, Dae-Hong;Kang, Young-Jae;Park, Jin-Goo;Kim, Jae-Seok;Kim, Geon;Lee, Ju-Yeol;Park, In-Ha
    • KSTLE International Journal
    • /
    • 제5권1호
    • /
    • pp.32-35
    • /
    • 2004
  • The purpose of this study is to investigate the effects of the structure and mechanical properties of laser-processed pads on their polishing behavior such as their removal rate and WIWNU (within wafer non-uniformity) during the chemical mechanical planarization (CMP) process. The holes on the pad acted as the reservoir of slurry particles and enhanced the removal rate. Without grooves, no effective removal of wafers was possible. When the length of the circular-type grooves was increased, higher removal rates and lower wafer non-uniformity were measured. The removal rate and non-uniformity linearly increased as the elastic modulus of the top pad increased. Higher removal rates and lower non-uniformity were measured as the hardness of the pad increased.

고속 회전 유연 디스크의 진동 저감용 공기 베어링 해석 (Numerical Simulations for Suppressing Transverse Vibration of a very Flexible Rotating Disk using Air Bearing Concept)

  • 이성호;임윤철
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2004년도 학술대회지
    • /
    • pp.175-185
    • /
    • 2004
  • Rotating disks are used in various machines such as data storage device, gyroscope, circular saw, etc. Transverse vibration of a rotating disk is very important for the performance of these machines. This work proposes a method to suppress transverse vibration of a very flexible rotating disk in non-contacting manner. A system considered in this study is a very flexible rotating disk with a thrust bearing pad which is located underneath the rotating disk. The pressure force generated in the gap between the rotating disk and the thrust pad pushes the rotating disk in the direction of axis of rotation while the centrifugal force and the elastic recovery force push the rotating disk in reverse direction. The balance between these forces suppresses the transverse vibration of the rotating disk. A coupled disk-fluid system is analyzed numerically. The finite element method is used to compute the pressure distribution between the thrust pad and the rotating disk while the finite difference method is used to compute the transverse vibration of a rotating disk. Results show that the transverse vibration of the rotating disk can be suppressed effectively for certain combination of air bearing and operating parameters.

  • PDF

Fragility curves for the typical multi-span simply supported bridges in northern Pakistan

  • Waseem, Muhammad;Spacone, Enrico
    • Structural Engineering and Mechanics
    • /
    • 제64권2호
    • /
    • pp.213-223
    • /
    • 2017
  • Bridges are lifeline and integral components of transportation system that are susceptible to seismic actions, their vulnerability assessment is essential for seismic risk assessment and mitigation. The vulnerability assessment of bridges common in Pakistan is very important as it is seismically very active region and the available code for the seismic design of bridges is obsolete. This research presents seismic vulnerability assessment of three real case simply supported multi-span reinforced concrete bridges commonly found in northern Pakistan, having one, two and three bents with circular piers. The vulnerability assessment is carried through the non-linear dynamic time history analyses for the derivation of fragility curves. Finite element based numerical models of the bridges were developed in MIDAS CIVIL (2015) and analyzed through with non-linear dynamic and incremental dynamic analyses, using a suite of bridge-specific natural spectrum compatible ground motion records. Seismic responses of shear key, bearing pad, expansion joint and pier components of each bridges were recorded during analysis and retrieved for performance based analysis. Fragility curves were developed for the bearing pads, shear key, expansion joint and pier of the bridges that first reach ultimate limit state. Dynamic analysis and the derived fragility curves show that ultimate limit state of bearing pads, shear keys and expansion joints of the bridges exceed first, followed by the piers ultimate limit state for all the three bridges. Mean collapse capacities computed for all the components indicated that bearing pads, expansion joints, and shear keys exceed the ultimate limit state at lowest seismic intensities.