• Title/Summary/Keyword: Circular Rod

Search Result 94, Processing Time 0.029 seconds

A Study on the Flame Structure and Stabilization in a Divergent Flow (확대관 흐름에 있어서 화염의 안정성 및 구조에 관한 연구)

  • 최병륜;이중성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.512-518
    • /
    • 1994
  • An experimental study is made on turbulent diffusion flames stabilized by a circular cylinder in a divergence flow. In this paper, stabilization characteristics and flame structure are examined by varying the divergence angle of duct and position of a circular cylinder. The fuel used is a commercial grade gaseous propane injected by two slit of rod. It is found that the positive pressure gradient greatly influences the eddy structure behind the rod. and that two different kinds of combustion patterns exist at the blowoff limit depending on the divergent angle of duct. They are distinguished by their wake structures: one associated with Karman vortex shedding, the other without it. Also, the blowoff velocity in the former is found to be higher than in the later.

Shaking Table Test and Analysis of Reinforced Concrete Frame with Steel Shear Wall with Circular Opening and Slit Damper

  • Shin, Hye-Min;Lee, Hee-Du;Shin, Kyung-Jae
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1420-1430
    • /
    • 2018
  • Earthquakes of 5.8 and 5.4 Richter scale recently occurred one after another in Korea, changing the Korean peninsula from an earthquake safe zone but 'earthquake danger zone'. Therefore, seismic reinforcements must expand to include structures with low seismic resistance in order to prepare for earthquakes on a larger scale in the future. This study investigated the performances of various seismic reinforcement systems such as X-braced steel rod reinforcement, steel shear wall with circular opening reinforcement, and slit damper reinforcement using shaking table test and computational analyses of seismic data in order to establish a proper seismic reinforcement plan. These three seismic reinforcement systems could increase the stiffness and strength of existing structures and reduce maximum drift ratio in the event of an earthquake.

On the analysis of delamination in multilayered inhomogeneous rods under torsion

  • Rizov, Victor I.
    • Coupled systems mechanics
    • /
    • v.8 no.5
    • /
    • pp.377-391
    • /
    • 2019
  • The present paper is focused on analyzing the delamination of inhomogeneous multilayered rods of circular cross-section loaded in torsion. The rods are made of concentric longitudinal layers of individual thickness and material properties. A delamination crack is located arbitrary between layers. Thus, the internal and external crack arms have circular and ring-shaped cross-sections, respectively. The layers exhibit continuous material inhomogeneity in radial direction. Besides, the material has non-linear elastic behavior. The delamination is analyzed in terms of the strain energy release rate. General solution to the strain energy release rate is derived by considering the energy balance. The solution is applied to analyze the delamination of cantilever rod. For verification, the strain energy release rate is derived also by considering the complementary strain energy.

Numerical Study on Heat Transfer Characteristics in Impinging Air Jet System (충돌분류시스템의 열전달 특성에 관한 수치적 연구)

  • Kum, Sung-Min;Kim, Dong-Choon
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.4
    • /
    • pp.55-61
    • /
    • 2003
  • Heat transfer characteristics for an air jet vertically impinging on a flat plate with a set of hybrid rods was investigated numerically using the RNG k-$\varepsilon$turbulent model. A commercial finite-volume code FLUENT is used. The rods had cross sections of half circular and rectangular shapes. The heating surface was heated with a constant heat flux value of $1020W/m^2$. Parameters investigated were the jet Reynolds number, nozzle -to-plate spacing, the rod pitch and rod-to-plate clearance. The local and average Nusselt number were found to be dependent on the rod pitch and the clearance because installing rods disturbed the flow. Higher convective heat transfer rate occurred in the whole plate as well as in the wall jet region.

An Experimental Study on the Heat Transfer Enhancement by Hybrid Rod (하이브리드 로드에 의한 열전달증진에 관한 연구)

  • Kum, S.M.;Kim, D.C.;Yim, J.S.
    • Solar Energy
    • /
    • v.19 no.3
    • /
    • pp.93-100
    • /
    • 1999
  • The objective of this experimental study was to investigate the characteristics of heat transfer and air flow in two-dimensional impinging jet system, in which hybrid rods have been set up in front of heating surface in order to increase heat transfer. The shape of hybrid rods had a cross section made with a half of circular cross section and that of rectangular. This time, the clearance from hybrid rod to heating surface(C=1, 2, 4mm) and the pitch between each hybrid rods(P=30, 40, 50mm) changed for the transition region(H/B=10). And this result compared with the experimentation without hybrid rod. As a result, heat transfer performance was best under the condition of C=1mm, in case clearance changed, and as the pitch is 30mm, it is largely influenced by eddies and acceleration in case pitch of hybrid rod changed.

  • PDF

A Free Vibration Analysis of the Continuous Circular Cylindrical Shell with the Multiple Simple Supports Using the Receptance Method (동적응답법을 이용한 다점 단순지지된 연속원통셸의 자유진동 해석)

  • 이영신;한창환
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.998-1008
    • /
    • 2000
  • The continuous circular cylindrical shells are widely used for the high performance structures of aircraft, spacecraft, missile, nuclear fuel rod shell etc.. In this paper, a method for the free vibration analysis of the continuous circular cylindrical shells with the multiple simple supports is developed by using the receptance method. With this method, the vibrational characteristics of the continuous system is analyzed by considering as a combined structure. The system receptance is also derided by the application of the equilibrium of forces and the continuity of displacements at the support points. The natural frequencies and mode shapes are calculated numerically and they are compared with the FEM results to improve the reliability of analytical solution. Numerical results on the 4-equal-span continuous circular cylindrical shell are presented in this paper.

  • PDF

Simulation of tracking errors for non-circular cutting using voice coil motor (VCM을 이용한 비원형 형상 가공의 궤적 오차 시뮬레이션)

  • Hwang J.D.;Kwak Y.K.;Kim S.H.;Ahan J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.57-58
    • /
    • 2006
  • A Simulation model is developed to minimize the path tracking errors when the non-circular cutting is done by a VCM(voice coil motor) driven tool. The relationship between PWM(Pulse Width Modulation) duty ratio and velocity of voice coil motor is theoretically derived from combining the circuit equation for the coils and the motion equation for the magnetic rod of the voice coil motor. The path tracking errors are showed differently according to the rotational speed, the number of segments and the control period in digital control. Given a required accuracy in the non-circular cutting, the optimal values for those parameters are determined based on the developed simulation model.

  • PDF

Vibration Analysis of the Continuous Circular Cylindrical Shell with the Clamped-clamped Supports at Two End Edges (양단이 고정지지된 연속원통셸의 진동특성 해석)

  • 한창환;이영신
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.2
    • /
    • pp.97-107
    • /
    • 2002
  • The continuous circular cylindrical shells are widely used for the high performance structures of aircraft, spacecraft, missile, nuclear fuel rod shell and so on. In this paper, a method for the vibrational analysis of the continuous circular cylindrical shells with the clamped-clamped supports at two end edges is developed by using the modal expansion method. Forces and/or moments acting on the shell surface are expressed in terms of the Dirac Delta Function. Frequency equation of the continuous shell is also derided by the application of the equilibrium of forces and the continuity of displacements at the boundary. Natural frequencies of the continuous shell are calculated numerically with mathematica 3.0 and they are compared with FEM results from the ANSYS 5.3 to improve the reliability of analytic solutions. Mode shares obtained by the FEM are Presented in this paper.

An Investigation of Pressure Drop Characteristics of Finned Rod Bundles (핀 봉다발의 압력강하 특성 연구)

  • Chung, Moo-Ki;Chung, Chang-Hwan;Chung, Heung-June;Song, Chul-Hwa;Yang, Sun-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.328-339
    • /
    • 1991
  • A multi-purpose research reactor called KMRR has been developed by Korea Atomic Energy Research Institute(KAERI) to generate a maximum thermal output of 30 MW. As a part of thermal hydraulics study, pressure drop characteristics of the longitudinally finned fuel rod bundles were experimentally investigated in a recirculating water test loop. The present study is focused on the investigation of fin effects on pressure drop and the development of pressure drop correlation for the finned rod bundles in a wide range of flow conditions. Friction factor correlations for each design of the finned rod bundles are developed. The value of friction factor for the finned rod bundles was higher than the analytical solution (64/Re) of laminar circular channel new but became lower than the Blasius equation as Reynolds number was increased.

  • PDF

Study on the Relationship Between Turbulent Normal Stresses in the Fully Developed Bare Rod Bundle Flow (완전히 발달된 맨봉주위의 난류유동장에서 난류 응력사이의 상관 관계에 대한 연구)

  • Lee, Kye-Bock;Lee, Byung-Jin
    • Nuclear Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.888-893
    • /
    • 1995
  • The turbulence structure for fully developed flow through the subchannels formed by the bare rod array depends on the pitch to rod diameter ratio. For fairly open spaced bare rod arrays, the distributions of the three components of the turbulent normal stresses are similar to those measured in circular pipe. However, for more closely spaced arrays, the turbulence structure, especially in the gap region, depart markedly from the pipe flow distribution. A linear relationship between turbulent normal stresses and turbulent kinetic energy for fully developed turbulent flow through regularly spaced bare rod arrays has been developed. This correlation can be used in connection with various theoretical analyses applied in turbulence research.

  • PDF