• 제목/요약/키워드: Circular Micro Channel

검색결과 18건 처리시간 0.027초

주기적으로 배열된 회전하는 원형 실린더를 이용한 채널유동 토폴로지 변화 (CHANGE OF CHANNEL-FLOW TOPOLOGY BY A STREAMWISE-PERIODIC ARRAY OF ROTATING CIRCULAR CYLINDERS)

  • 정태경;양경수;이경준;강창우
    • 한국전산유체공학회지
    • /
    • 제18권4호
    • /
    • pp.17-24
    • /
    • 2013
  • In this study, we consider the characteristics of channel flow in the presence of an infinite streamwise array of equispaced identical rotating circular cylinders. This flow configuration can be regarded as a model representing a micro channel or an internal heat exchanger with cylindrical vortex generators. A numerical parametric study has been carried out by varying Reynolds number based on the bulk mean velocity and the cylinder diameter, and the gap between the cylinders and the channel wall for some selected angular speeds. An immersed boundary method was employed to facilitate implementing the cylinders on a Cartesian grid system. No-slip condition is employed at all solid boundaries including the cylinders, and the flow is assumed to be periodic in the streamwise direction. The presence of the rotating circular cylinders arranged periodically in the streamwise direction causes a significant topological change of the flow, leading to increase of mean friction on the channel walls. More quantitative results as well as qualitative physical explanations are presented to justify the effectiveness of rotating cylinders to modify flow topology, which might be used to enhance heat transfer on the channel walls.

Investigation of Single Phase Frictional Pressure Loss in Circular Micro Tubes

  • Han Dong-Hyouck;Lee Kyu-Jung
    • Journal of Mechanical Science and Technology
    • /
    • 제20권8호
    • /
    • pp.1284-1291
    • /
    • 2006
  • Single phase pressure drops in micro tubes were investigated through an experimental measurement and a numerical simulation. Experimental Po was obtained in circular micro tubes with 87 and $118{\mu}m$ diameter with distilled water. Experiments were carried out in laminar flow region with varying the Re 15-450 for the $87{\mu}m$ diameter tubes and 60-1300 for the $118{\mu}m$ diameter tube. No early transition from laminar to turbulent flow was detected for the experimental range. The computational estimation of pressure drop in the $87{\mu}m$ diameter tube was performed with the aid of CFD software. Boundary conditions from experiments were used for the numerical simulation. The results of experimental and numerical studies showed a good agreement with the conventional macro theory.

마이크로 채널 관에서의 응축 열전달 성능에 관한 연구 (A study on condensation heat transfer performance in microchannel tube)

  • 이정근
    • Design & Manufacturing
    • /
    • 제13권2호
    • /
    • pp.22-29
    • /
    • 2019
  • This study conducted a research as to condensation heat transfer by using three types of flat micro multi-channel tubes with different processing of micro-fin and number of channels inside the pipes and different sizes of appearances. In addition, identical studies were conducted by using smoothing circular tubes with 5mm external diameter to study heat transfer coefficient. The condensation heat transfer coefficient showed an increase as the vapor quality and mass flux increased. However, each tube shows little differences compared to 400kg/m2s or identical in case the mass flux are 200kg/m2s and 100kg/m2s. The major reason for these factors is increase-decrease of heat transfer area that the flux type of refrigerant is exposed to the coolant's vapor with the effect of channel aspect ratio or micro-fin. In addition, the heat transfer coefficient was unrelated to the heat flux, and shows a rise as the saturation temperature gets lower, an effect that occurs from enhanced density. The physical factor of heat transfer coefficient increased as the channel's aspect ratio decreased. Additionally, the micro pin at the multi-channel type tube is decided as a disadvantageous factor to condensation heat enhancement factor. That is, due to the effect of aspect ratio or micro-fin, the increase-decrease of heat transfer area that the flux type of a refrigerant is exposed to the vapor is an important factor.

평행류형 마이크로채널 이산화탄소 증발기에서 냉매분배에 관한 연구 (A Study on the Refrigerant Distribution in a Parallel Flow Micro-Channel $CO_2$ Evaporator)

  • 정시영;김대환
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1079-1083
    • /
    • 2009
  • In this study, the distribution of $CO_2$ in an evaporator with 10 parallel micro channel aluminum tubes are experimentally investigated. Each tube has 6 circular micro channels with a diameter of 0.8mm. The tubes are heated with electric resistance wires, and the distribution of $CO_2$ into each tube is investigated by measuring the outer wall temperature. The outer wall temperature was found to be higher at the exit part of the top tube. It is thought that the $CO_2$ vapor at the upper part of the header reduces the mass flow rate of $CO_2$ into the top tube.

  • PDF

Circumferential Alignment of Vascular Smooth Muscle Cells in a Cylindrical Microchannel

  • Choi, Jong Seob;Piao, Yunxian;Kim, Kyung Hoon;Seo, Tae Seok
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.274.1-274.1
    • /
    • 2013
  • We report the circumferential alignment of human aortic smooth muscle cells (HASMCs) in an orthogonally micropatterned circular microfluidic channel to form an in vivo-like smooth muscle cell layer. To realize a biomimetic smooth muscle cell layer which is aligned perpendicular to the axis of blood vessel, we first fabricated a half-circular polydimethylsiloxane (PDMS) microchannel by soft lithography using a convex PDMS mold. The orthogonally micro wrinkle patterns were generated inside the half-circular microchannel by stretching-releasing operation under UV irradiation. Upon UV treatment with uniaxial 40 % stretch of a PDMS substrate and releasing process, the microwrinkle patterns perpendicular to the axial direction of the circular microchannel were generated, which could guide the circumferential alignment of HASMCs successfully during cultivation. The analysis of orientation angle, shape index, and contractile protein marker expression indicates that the cultured HASMCs revealed the in vivo-like cell phenotype. Finally, we produced circular microchannels by bonding two half-circular microchannels, and cultured the HASMCs circumferentially with high alignment and viability for 5 days. These results are the first demonstration for constructing an in vivo-like 3D smooth muscle cell layer in the circular microfluidic channel which can provide novel bioassay platforms for in-depth study of HASMC biology and vascular function.

  • PDF

주기적으로 배열된 원형 실린더를 이용한 채널 유동의 열전달 증진 (HEAT TRANSFER ENHANCEMENT IN CHANNEL FLOW BY A STREAMWISE-PERIODIC ARRAY OF CIRCULAR CYLINDERS)

  • 정태경;양경수;이경준;강창우
    • 한국전산유체공학회지
    • /
    • 제18권2호
    • /
    • pp.85-92
    • /
    • 2013
  • In this study, we consider heat transfer enhancement in laminar channel flow by means of an infinite streamwise array of equispaced identical circular cylinders. This flow configuration can be regarded as a model representing a micro channel or an internal heat exchanger with cylindrical vortex generators. A numerical parametric study has been carried out by varying Reynolds number based on the bulk mean velocity and the cylinder diameter, and the gap between the cylinders and the channel wall. An immersed boundary method was employed to facilitate to implement the cylinders on a Cartesian grid system. No-slip condition is employed at all solid boundaries including the cylinders, and the flow is assumed to be periodic in the streamwise direction. Also, the Prandtl number is fixed as 0.7. For thermal boundary conditions on the solid surfaces, it is assumed that heat flux is constant on the channel walls, while the cylinder surfaces remain adiabatic. The presence of the circular cylinders arranged periodically in the streamwise direction causes a significant topological change of the flow, leading to heat transfer enhancement on the channel walls. The Nusselt number averaged on the channel wall is presented for the wide ranges of Reynolds number and the gap. A significant heat transfer enhancement is noticed when the gap is larger than 0.8, while the opposite is the case for smaller gaps. More quantitative results as well as qualitative physical explanations are presented to justify the effectiveness of varying the gap to enhance heat transfer from the channel walls.

진동 교반기가 있는 미소채널에서 혼합에 대한 Karman 와의 영향 (The Effect of Karman Vortex for Mixing in a Micro-channel with an Oscillating Micro-stirrer)

  • 안상준;맹주성;김용대
    • 대한기계학회논문집B
    • /
    • 제30권2호
    • /
    • pp.144-152
    • /
    • 2006
  • In order to consider the effect of Karman vortex for mixing, mixing indices are calculated for 4 models of micro channel flows driven from the combinations of a circular cylinder and a oscillating stirrer. And their results are compared to that of a simple straight micro channel flow(model I). The mixing rate is improved 5.5 times by Karman vortex (model II) and 11.0 times by the stirrer(model III) respectively. In case of successive mixing by the cylinder and the stirrer(model IV), $27\%$ of shortening the channel length for the complete mixing as well as 1.37 times improvement of mixing efficiency then model III. And then, variation of mixing indices are much stable comparing with the others. Thus, it is found that the Karman vortex plays a good role as a pre-mixing method. The D2Q9 Lattice Boltzmann methods are used.

주기적으로 배열된 회전하는 원형 실린더를 이용한 채널유동의 열전달 증진 (Heat Transfer Enhancement in Channel Flow by a Streamwise-Periodic Array of Rotating Circular Cylinders)

  • 정태경;양경수
    • 대한기계학회논문집B
    • /
    • 제38권12호
    • /
    • pp.999-1008
    • /
    • 2014
  • 채널 내 회전하는 원형 실린더가 주기적으로 존재하는 경우 회전하는 실린더를 지나는 유동에 의한 채널 내 유동 특성 및 채널 벽에서의 열전달 효율증진을 파악하였다. 본 연구에서 사용된 유동 모델은 마이크로 채널, 열교환기 등에서 평판 사이의 열전달 효율을 높이기 위해 흔히 사용되는 와류 생성기의 가장 단순한 모델이다. 실린더와 채널 벽과의 간격 및 Re 수를 변화해가며 수치적 해석을 수행하였으며, 직교좌표계에서 채널 내 원형 실린더를 구현하기 위해 가상경계법이 적용 되었다. 채널 내 실린더가 회전하고 있는 경우, 실린더가 정지해 있는 경우에 비해 특히 실린더와 채널 벽과의 간격이 작아질수록 채널 벽에서의 열전달 효과는 더 높은 것으로 파악되었다.

초소형 점성 펌프의 Wavier-Stokes 해석 (NAVIER-STOKES SIMULATION OF A MICRO-VISCOUS PUMP)

  • 강동진
    • 한국전산유체공학회지
    • /
    • 제11권4호
    • /
    • pp.75-80
    • /
    • 2006
  • Navier-Stokes simulation of the flow in a micro viscous pump is carried out. The micro viscous pump consists of a rotating circular rotor placed in a two dimensional channel. All simulation is carried out by using a finite volume approach, at the Reynolds number of 0.5, to study the performance of the micro viscous pump. Length of channel of the pump is varied to simulate the effects of the pumping load. Numerical solutions show that the net flow of the pump is realized by two counter rotating vortices formed on both sides of the rotor. The volume flow rate of the pump is decreased as length of the channel is increased, while the static pressure difference across the rotor is increased. The static pressure difference across the rotor is observed to be inversely proportional to the volume flow rate as inertia effects are negligibly small. The efficiency of the pump is found to reach a maximum when two counter rotating vortices on both sides of the rotor becomes to merge forming an outer enveloping vortex.

Reynolds 수와 Knudsen 수가 초소형 점성펌프에 미치는 영향 (EFFECTS OF THE REYNOLDS AND KNUDSEN NUMBERS ON THE FLOW OF A MICRO-VISCOUS PUMP)

  • 강동진;이벨리나이바노바이바노바
    • 한국전산유체공학회지
    • /
    • 제13권2호
    • /
    • pp.14-19
    • /
    • 2008
  • Effects of the Reynolds and Knudsen numbers on a micro-viscous pump are studied by using a Navier-Stokes code based on a finite volume method. The micro viscous pump consists of a circular rotor and a two-dimensional channel. The channel walls are treated by using a slip velocity model. The Reynolds number is studied in the range of $0.1{\sim}50$. The Knudsen number varies from 0.01 to 0.1. Numerical solutions show that the pump works efficiently when two counter rotating vortices formed on both sides of the rotor have the same size and intensity. As the Reynolds number increases, the size and intensity of the vortex on the inlet side of the pump decrease. It disappears when the Reynolds number is larger than about Re=20. The characteristics of the performance of the pump is shown to deteriorate, in terms of mean velocity and pressure rise, as the Reynolds number increases. The Knudsen number shows a different effect on the characteristics of the pump. As it increases, the mean velocity and pressure rise decrease but the characteristics of the vortex flow remains unchanged, unlike the effect of Reynolds number.