• Title/Summary/Keyword: Circular Column

Search Result 327, Processing Time 0.03 seconds

A New Approach for Image Encryption Based on Cyclic Rotations and Multiple Blockwise Diffusions Using Pomeau-Manneville and Sin Maps

  • Hanchinamani, Gururaj;Kulakarni, Linganagouda
    • Journal of Computing Science and Engineering
    • /
    • v.8 no.4
    • /
    • pp.187-198
    • /
    • 2014
  • In this paper an efficient image encryption scheme based on cyclic rotations and multiple blockwise diffusions with two chaotic maps is proposed. A Sin map is used to generate round keys for the encryption/decryption process. A Pomeau-Manneville map is used to generate chaotic values for permutation, pixel value rotation and diffusion operations. The encryption scheme is composed of three stages: permutation, pixel value rotation and diffusion. The permutation stage performs four operations on the image: row shuffling, column shuffling, cyclic rotation of all the rows and cyclic rotation of all the columns. This stage reduces the correlation significantly among neighboring pixels. The second stage performs circular rotation of pixel values twice by scanning the image horizontally and vertically. The amount of rotation is based on $M{\times}N$ chaotic values. The last stage performs the diffusion four times by scanning the image in four different ways: block of $8{\times}8$ pixels, block of $16{\times}16$ pixels, principal diagonally, and secondary diagonally. Each of the above four diffusions performs the diffusion in two directions (forwards and backwards) with two previously diffused pixels and two chaotic values. This stage makes the scheme resistant to differential attacks. The security and performance of the proposed method is analyzed systematically by using the key space, entropy, statistical, differential and performance analysis. The experimental results confirm that the proposed method is computationally efficient with high security.

Occurrence of Apple scar viroid-Korean strain (ASSVd-K) in Apples Cultivated in Korea

  • Lee, Ju-Hee;Park, Jean-Kyung;Lee, Dong-Hyuk;Uhm, Jae-Youl;Ghim, Sa-Youl;Lee, Jai-Youl
    • The Plant Pathology Journal
    • /
    • v.17 no.5
    • /
    • pp.300-304
    • /
    • 2001
  • Apple is the most economically important fruit in Korea. The suspected viroid disease of dapple apple was found in apple fruits cultivated in Kyungpook province. Symptoms begin in mid-July as small circular spots, which stand out against the background color on the young fruit. Dappling of the fruit becomes more intense and easier to detect as the fruit approaches maturity; the affected spots remain yellowish as the fruit matures. no leaf or bark syndromes have been associated with this disease. The infected fruits are downgraded considerably during quality grading. The low molecular weight RNA containing viroid RNA molecules were extracted from the peels of the apples with dapple symptoms. The RNA molecules were extracted from the apples using Qiagen column chromatography. The purified RNAs were used for the synthesis of cDNA with RT-PCR. The PCR products were then ligated into a pGEM-T Easy vector, cloned and sequenced. The sequence of the viroid RNA molecule shows 331 nucleotides with one base difference ("G" insertion between the position of 133 and 134) compared with that of the Apple scar skin viroid (ASSVd) reported by Hashimoto and Koganezawa in Japan. This is the first report on the occurrence of the ASSVd in apple trees cultivated in Korea, as well as the identification of a new Korean strain of the ASSVd.the ASSVd.

  • PDF

Purification of Caudal-Related Homeodomain Transcription Factor and Its Binding Characterization

  • Jeong, Mi-Suk;Hwang, Eun-Young;Kim, Hyun-Tae;Yoo, Mi-Ae;Jang, Se-Bok
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1557-1564
    • /
    • 2009
  • Human CDX2 is known as a caudal-related homeodomain transcription factor that is expressed in the intestinal epithelium and is important in differentiation and maintenance of the intestinal epithelial cells. The caudal-related homeobox proteins bind DNA according to a helix-turn-helix structure, thereby increasing the structural stability of DNA. A cancer-tumor suppressor role for Cdx2 has been shown by a decrease in the level of the expression of Cdx2 in colorectal cancer, but the mechanism of transcriptional regulation has not been examined at the molecular level. We developed a large-scale system for expression of the recombinant, novel CDX2, in Escherichia coli. A highly purified and soluble CDX2 protein was obtained in E. coli strain BL21(DE3)RIL and a hexahistidine fusion system using Ni-NTA affinity column, anion exchange, and gel filtration chromatographies. The identity and secondary structure of the purified CDX2 protein were confirmed by MALDI-TOF MS, Western blot, and a circular dichroism analyses. In addition, we studied the DNA-binding activity of recombinant CDX2 by ELISA experiment and isolated human CDX2-binding proteins derived from rat cells by an immobilized GST-fusion method. Three CDX2-binding proteins were found in the gastric tissue, and those proteins were identified to the homeobox protein Hox-D8, LIM homeobox protein 6, and SMC1L1 protein.

Instability of High-Speed Impinging Jets(II) (고속 충돌제트의 불안정 특성)

  • Gwon, Yeong-Pil;Im, Jeong-Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.450-467
    • /
    • 1998
  • The characteristics of the unstable impinging circular jet is investigated based on the frequency characteristics and the sound field of the impinging-tones. Two symmetric modes S1 and S2, associated with low frequency and high frequency respectively, and one helical mode H have been observed. At low speed the S2 mode is dominant and switched by the S1 mode as the speed increases. When the jet speed is high the S1 mode is very active over the impinging distance from half the nozzle diameter to its ten times, while the S2 mode occurs at shorter distance corresponding to stage 2 and 3. The helical mode H seems unstable, likely to be influenced much by the experimental environment, and occurs at relatively high speed with almost the same frequency characteristics as the S2 mode. By estimating the convection speed of the unstable jet, it is found that the ratio of the convection speed to the jet speed decreases with both Strouhal number and Reynolds number and the speed of S2 mode is faster than the Si mode. When the present experimental results are compared with the previous investigations performed for the hole tone and the impinging tone with a small plate, the S1 mode is found to be associated with the ring vortex of large diameter with low speed, but the S2 mode with the vortex of small diameter with high speed. In addition, the frequency is found to be influenced by the nozzle configuration but the characteristics is almost the same. From the impinging distance and frequency range, it can be deduced that S1 mode is related with the jet column mode and S2 mode with the shear mode.

A Study on the fire-resistance of concrete-filled steel square tube columns without fire protection under constant central axial loads

  • Park, Su-Hee;Choi, Sung-Mo;Chung, Kyung-Soo
    • Steel and Composite Structures
    • /
    • v.8 no.6
    • /
    • pp.491-510
    • /
    • 2008
  • This paper presents a plan and guidelines that were drawn for Korean based research carried out on the fire-resistance of CFT columns. This research was carried out by reviewing the Korean regulations related to the fire-resistance of CFT columns and examining studies which had been made in Korea as well as overseas. The first phase of the study plan was to compare the fire-resistance of square CFT columns without fire protection (obtained through fire-resistance tests and numerical analyses) with estimated values (obtained through fire-resistance design formulas proposed in Korea and overseas). This comparison provided conclusions as outlined below. Fire-resistance tests conducted in this study proved that, when the actual design load is taken into consideration, square CFT columns without fire protection are able to resist a fire for more than one hour. A comparison was made of test and analysis results with the fire-resistance time based on the AIJ code, the AISC design formula and the estimation formula suggested for Korea. The results of this comparison showed that the test and analysis results for specimens SAH1, SAH2-1, SAH2-2 and SAH3 were almost identical with the AIJ code, the AISC design formula and estimation formula. For specimens SAH4 and SAH5, the estimation formula was more conservative than the AIJ code and the AISC design formula. It was necessary to identify the factors that have an influence on the fire-resistance of CFT columns without fire protection and to draw fire-resistance design formulas for these columns. To achieve this, it is proposed that numerical analyses and tests be conducted in order to evaluate the fire-resistance of circular CFT columns, the influence of eccentricity existing as an additional factor and the influence of the slenderness ratio of the columns. It is also suggested that the overall behavior of CFT structures without fire protection within a fire be evaluated through analysis simulation.

Symbolic computation and differential quadrature method - A boon to engineering analysis

  • Rajasekaran, S.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.6
    • /
    • pp.713-739
    • /
    • 2007
  • Nowadays computers can perform symbolic computations in addition to mere number crunching operations for which they were originally designed. Symbolic computation opens up exciting possibilities in Structural Mechanics and engineering. Classical areas have been increasingly neglected due to the advent of computers as well as general purpose finite element software. But now, classical analysis has reemerged as an attractive computer option due to the capabilities of symbolic computation. The repetitive cycles of simultaneous - equation sets required by the finite element technique can be eliminated by solving a single set in symbolic form, thus generating a truly closed-form solution. This consequently saves in data preparation, storage and execution time. The power of Symbolic computation is demonstrated by six examples by applying symbolic computation 1) to solve coupled shear wall 2) to generate beam element matrices 3) to find the natural frequency of a shear frame using transfer matrix method 4) to find the stresses of a plate subjected to in-plane loading using Levy's approach 5) to draw the influence surface for deflection of an isotropic plate simply supported on all sides 6) to get dynamic equilibrium equations from Lagrange equation. This paper also presents yet another computationally efficient and accurate numerical method which is based on the concept of derivative of a function expressed as a weighted linear sum of the function values at all the mesh points. Again this method is applied to solve the problems of 1) coupled shear wall 2) lateral buckling of thin-walled beams due to moment gradient 3) buckling of a column and 4) static and buckling analysis of circular plates of uniform or non-uniform thickness. The numerical results obtained are compared with those available in existing literature in order to verify their accuracy.

Experimental study on axial compressive behavior of hybrid FRP confined concrete columns

  • Li, Li-Juan;Zeng, Lan;Xu, Shun-De;Guo, Yong-Chang
    • Computers and Concrete
    • /
    • v.19 no.4
    • /
    • pp.395-404
    • /
    • 2017
  • In this paper, the mechanical property of CFRP, BFRP, GFRP and their hybrid FRP was experimentally studied. The elastic modulus and tensile strength of CFRP, BFRP, GFRP and their hybrid FRP were tested. The experimental results showed that the elastic modulus of hybrid FRP agreed well with the theoretical rule of mixture, which means the property of hybrid composites are linear with the volumes of the corresponding components while the tensile strength did not. The bearing capacity, peak strain, stress-strain relationship of circular concrete columns confined by CFRP, BFRP, GFRP and hybrid FRP subjected to axial compression were recorded. And the confinement effect of hybrid FRP on concrete columns was analyzed. The test results showed that the bearing capacity and ductility of concrete columns were efficiently improved through hybrid FRP confinement. A strength model and a stress-strain relationship model of hybrid FRP confined concrete columns were proposed. The proposed stress-strain model was shown to be capable of providing accurate prediction of the axial compressive strength of hybrid FRP confined concrete compared with Teng et al. (2002) model, Karbhari and Gao (1997) model and Miyachi et al. (1999) model. The modified stress-strain model was also suitable for single FRP confinement cases and it was so concise in form and didn't have piecewise fitting, which would be easy for use in structural design.

The Biomechanical Evaluation of New Walking-shoes (신 워킹 전문화의 생체역학적 기능성 평가)

  • Kim, Eui-Hwan;Chung, Chae-Wook;Lim, Jung
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.193-205
    • /
    • 2006
  • This study was to analysis the kinematic and kinetic differences between new walking shoe(NWS : RYN) and general walking shoe(GWS). The subjects for this study were 10 male adults who had the walking pattern of rearfoot shrike with normal foot. The movement of one lower leg was measured using plantar pressure and Vicon Motion Analysis Program(6 MX13 and 2 MX40 cameras : 100 f / s) while the subjects walked at the velocity(1.5m/s. on 2m).. The results of this study was as follows : 1. The NWS was better than the GWS that caused injuries such as adduction, abduction and pronation are reduced While walking on a perpendicular surface, the landing angle and the knees angles were extensive which makes walking more safe which reduces anxiety and uneasiness. 2. The bottom of the NWS were now made into a more circular arch which supports the weight of the body and reduces the irregular angles when wearing GWS. This arch made the supporting area more wide which made the upholding the trunk of the body more effective. The whole bottom of the foot that supports the weight is more flexible in addition, increases the safeness of walking patterns and the momentum of the body. 3. The moment the heel of the foot of the NWS touch the ground, the range of the pressure were partially notable and the range of the pressure on the upper part of the thigh were dispersed The injuries that occurred while walking. primary factors when a shock related injuries are reduced Judgements of the impacts of the knees and the spinal column dispersing could be made.

Numerical simulation and analytical assessment of STCC columns filled with UHPC and UHPFRC

  • Nguyen, Chau V.;Le, An H.;Thai, Duc-Kien
    • Structural Engineering and Mechanics
    • /
    • v.70 no.1
    • /
    • pp.13-31
    • /
    • 2019
  • A nonlinear finite element model (FEM) using ATENA-3D software to simulate the axially compressive behavior of circular steel tube confined concrete (CSTCC) columns infilled with ultra high performance concrete (UHPC) was presented in this paper. Some modifications to the material type "CC3DNonlinCementitious2User" of UHPC without and with the incorporation of steel fibers (UHPFRC) in compression and tension were adopted in FEM. The predictions of utimate strength and axial load versus axial strain curves obtained from FEM were in a good agreement with the test results of eighteen tested columns. Based on the results of FEM, the load distribution on the steel tube and the concrete core was derived for each modeled column. Furthermore, the effect of bonding between the steel tube and the concrete core was clarified by the change of friction coefficient in the material type "CC3DInterface" in FEM. The numerical results revealed that the increase in the friction coefficient leads to a greater contribution from the steel tube, a decrease in the ultimate load and an increase in the magnitude of the loss of load capacity. By comparing the results of FEM with experimental results, the appropriate friction coefficient between the steel tube and the concrete core was defined as 0.3 to 0.6. In addition to the numerical evaluation, eighteen analytical models for confined concrete in the literature were used to predict the peak confined strength to assess their suitability. To cope with CSTCC stub and intermediate columns, the equations for estimating the lateral confining stress and the equations for considering the slenderness in the selected models were proposed. It was found that all selected models except for EC2 (2004) gave a very good prediction. Among them, the model of Bing et al. (2001) was the best predictor.

Performance of Beam Extractions for the KSTAR Neutral Beam Injector

  • Chang, D.H.;Jeong, S.H.;Kim, T.S.;Lee, K.W.;In, S.R.;Jin, J.T.;Chang, D.S.;Oh, B.H.;Bae, Y.S.;Kim, J.S.;Cho, W.;Park, H.T.;Park, Y.M.;Yang, H.L.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.240-240
    • /
    • 2011
  • The first neutral beam injector (NBI-1) has been developed for the Korea Superconducting Tokamak Advanced Research (KSTAR) tokamak. A first long pulse ion source (LPIS-1) has been installed on the NBI-1 for an auxiliary heating and current drive of KSTAR core plasmas. Performance of ion and neutral beam extractions in the LPIS-1 was investigated initially on the KSTAR NBI-1 system, prior to the neutral beam injection into the main plasmas. The ion source consists of a JAEA magnetic bucket plasma generator with multi-pole cusp fields and a set of KAERI prototype-III tetrode accelerators with circular apertures. The inner volume of plasma generator and accelerator column in the LPIS-1 is approximately 123 liters. Final design requirements for the ion source were a 120 kV/ 65 A deuterium beam and a 300 s pulse length. The extraction of ion beams was initiated by the formation of arc plasmas in the LPIS-1, called as an arc-beam extraction method. A stable ion beam extraction of LPIS-1 has been achieved up to an 100 kV/42 A for a 4 s pulse length and an 80 kV/25 A for a 14 s pulse length. Optimum beam perveance of 1.21 microperv has been found at an accelerating voltage of 80 kV. Neutralization efficiency has been measured by using a water flow calorimetry (WFC) method of calorimeter and an operation of bending magnet. The full-energy species of ion beams have been detected by using the diagnostic method of optical multichannel analyzer (OMA). An arc efficiency of the LPIS was 0.6~1.1 A/kW depending on the operating conditions of arc discharge.

  • PDF