• 제목/요약/키워드: Circular Column

검색결과 330건 처리시간 0.03초

Experimental study on circular concrete filled steel tubes with and without shear connectors

  • Chithira, K.;Baskar, K.
    • Steel and Composite Structures
    • /
    • 제16권1호
    • /
    • pp.97-114
    • /
    • 2014
  • This paper deals with a study on ultimate strength behaviour of eccentrically loaded CFT columns with and without shear connectors. Thirty specimens are subjected to experimental investigation under eccentric loading condition. P-M curves are generated for all the test specimens and critical eccentricities are evaluated. Three different D/t ratios such as 21, 25 and 29 and L/D ratios varying from 5 to 20 are considered as experimental parameters. Six specimens of bare steel tubes as reference specimens, twelve specimens of CFT columns without shear connectors and twelve specimens of CFT columns with shear connectors, in total thirty specimens are tested. The P-M values at the ultimate failure load of experimental study are found to be well agreed with the results of the proposed P-M interaction model. The load-deflection and load-strain behaviour of the experimental column specimens are presented. The behaviour of the CFT columns with and without shear connectors is compared. Experimental results indicate that the percentage increase in load carrying capacity of CFT columns with shear connectors compared to the ordinary CFT columns is found to be insignificant with a value ranging from 6% to 13%. However, the ductility factor of columns with shear connectors exhibit higher values than that of the CFT columns without shear connectors. This paper presents the proposed P-M interaction model and experimental results under varying parameters such as D/t and L/D ratios.

Model tests on the moored vessel with different moonpool shapes

  • Sajjan, Sharanabasappa C.;Surendran, S.
    • Ocean Systems Engineering
    • /
    • 제3권2호
    • /
    • pp.137-147
    • /
    • 2013
  • Moonpools are vertical wells in a floating body used onboard many types of vessels like cable-laying vessels and offshore support vessels. Moonpool gives passage to underwater activities for different types of ships as per their mission requirements. It is observed that inside a moonpool considerable relative motions may occur, depending on shape, depth of the moonpool and on the frequency range of the waves to which the ship is exposed. The vessel responses are entirely different in zero and non-zero Froude number. Former situation is paid attention in this study as the mission requirement of the platform is to be in the particular location for long period of operation. It is well known that there are two modes of responses depending on the shape of the moonpool viz., piston mode for square shape and sloshing mode for rectangular shapes with different aspect ratios of opening like 1:1.5 and 1:2 ratios. Circular shaped moonpool is also tested for measuring the responses. The vessel moored using heavy lines are modeled and tested in the wave basin. The moored lines are provided with pre-tension and the dynamic tensions on the lines are measured. The different modes of oscillations of water column are measured using wave gauge and the vessel response at a particular situation is determined. RAOs determined for various situations provide better insight to the designer. The experiments done in the wave basin may also be compared with a software package meant for handling moored floating bodies.

휨-전단 복합 거동을 보이는 RC 원형교각의 내진성능 평가 (Seismic Performance Evaluation of Circular RC Bridge Piers with Shear-Flexure Behavior)

  • 김병석;김영진;곽임종;조창백;조정래
    • 한국지진공학회논문집
    • /
    • 제5권3호
    • /
    • pp.29-36
    • /
    • 2001
  • 국내 일반 국도상의 교량을 분석한 결과 형상비가 2.5 내외로서 휨-전단 파괴 거동이 예측되는 교각이 다수 존재하는 것으로 나타났으나 기존의 교각 내진 특성 연구는 주로 휨 파괴 거동을 보이는 교각에 대해 수행되어 왔다. 본 연구에서는 휨-전단 복합모드가 작용하여 파괴에 이를 가능성이 많은 형상비 2.5 내외인 기존 교각을 대상모델로 선정하고 실물크기 모형 및 축소모형 시험체를 제작하여 준정적 실험(quasi static test)을 수행하였다. 실험결과로부터 상사효과(scale effect)가 교각 내진 성능평가에 미치는 영향을 분석하였고, 또한 비내진 상세인 실험대상 교량에 대해 역량스펙트럼법을 이용하여 내진성능을 평가하였다.

  • PDF

Effects of deficiency location on CFRP strengthening of steel CHS short columns

  • Shahabi, Razieh;Narmashiri, Kambiz
    • Steel and Composite Structures
    • /
    • 제28권3호
    • /
    • pp.267-278
    • /
    • 2018
  • Structures may need retrofitting as a result of design and calculation errors, lack of proper implementation, post-construction change in use, damages due to accidental loads, corrosion and changes introduced in new editions of construction codes. Retrofitting helps to compensate weakness and increase the service life. Fiber Reinforced Polymer (FRP) is a modern material for retrofitting steel elements. This study aims to investigate the effect of deficiency location on the axial behavior of compressive elements of Circular Hollow Section (CHS) steel short columns. The deficiencies located vertically or horizontally at the middle or bottom of the element. A total of 43 control column and those with deficiencies were investigated in the ABAQUS software. Only 9 of them tested in the laboratory. The results indicated that the deficiencies had a significant effect on the increase in axial deformation, rupture in deficiency zone (local buckling), and decrease in ductility and bearing capacity. The damages of steel columns were responsible for resistance and stiffness drop at deficiency zone. Horizontal deficiency at the middle and vertical deficiency at the bottom of the steel columns were found to be the most critical. Using Carbon Fiber Reinforced Polymer (CFRP) as the most effective material in retrofitting the damaged columns, significantly helped the increase in resistance and rupture control around the deficiency zone.

Numerical investigation on the response of circular double-skin concrete-filled steel tubular slender columns subjected to biaxial bending

  • Abu-Shamah, Awni;Allouzi, Rabab
    • Steel and Composite Structures
    • /
    • 제37권5호
    • /
    • pp.533-549
    • /
    • 2020
  • Recently, Concrete-filled double skin steel tubular (CFDST) columns have proven an exceptional structural resistance in terms of strength, stiffness, and ductility. However, the resistance of these column members can be severely affected by the type of loading in which bending stresses increase in direct proportion with axial load and eccentricity value. This paper presents a non-linear finite element based modeling approach that studies the behavior of slender CFDST columns under biaxial loading. Finite element models were calibrated based on the outcomes of experimental work done by other researchers. Results from simulations of slender CFDST columns under axial loading eccentric in one direction showed good agreement with the experimental response. The calibrated models are expanded to a total of thirty models that studies the behavior of slender CFDST columns under combined compression and biaxial bending. The influences of parameters that are usually found in practice are taken into consideration in this paper, namely, eccentricity-to-diameter (e/D) ratios, slenderness ratios, diameter-to-thickness (D/t) ratios, and steel contribution ratios. Finally, an analytical study based on current code provisions is conducted. It is concluded that South African national standards (2011) provided the most accurate results contrasted with the Eurocode 4 (2004) and American Institute of Steel Construction (2016) that are found to be conservative. Accordingly, correction factors are proposed to the current design guidelines to provide more satisfactory results.

Experimental investigation of flow characteristics around four square-cylinder arrays at subcritical Reynolds numbers

  • Liu, Mingyue;Xiao, Longfei;Yang, Lijun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권5호
    • /
    • pp.906-919
    • /
    • 2015
  • The Deep Draft Semi-Submersible (DDS) concepts are known for their favourable vertical motion performance. However, the DDS may experience critical Vortex-Induced Motion (VIM) stemming from the fluctuating forces on the columns. In order to investigate the current-induced excitation forces of VIM, an experimental study of flow characteristics around four square-section cylinders in a square configuration is presented. A number of column spacing ratios and array attack angles were considered to investigate the parametric influences. The results comprise flow patterns, drag and lift forces, as well as Strouhal numbers. It is shown that both the drag and lift forces acting on the cylinders are slightly different between the various L/D values, and the fluctuating forces peak at L/D = 4.14. The lift force of downstream cylinders reaches its maximum at around ${\alpha}=15^{\circ}$. Furthermore, the flow around circular-section-cylinder arrays is also discussed in comparison with that of square cylinders.

축방향철근의 저주파 피로 모델 (Low Cycle Fatigue Model for Longitudinal Reinforcement)

  • 고성현;이재훈
    • 콘크리트학회논문집
    • /
    • 제22권2호
    • /
    • pp.273-282
    • /
    • 2010
  • 이 연구는 기존 모델에 대한 검증 및 국내에서 생산되고 있는 철근이 반복하중을 받는 경우의 파괴특성에 대한 적합한 모델을 제시하는 것을 목적으로 한다. 이 논문은 철근콘크리트 하부구조(파일과 교각)에 배근된 축방향철근에 대한 저주파 피로 거동에 대한 모델링을 다루었고, 전체 81개의 저주파 피로 실험 데이터에 기초하여 저주파 피로 모델을 제안하였다. 제안된 저주파 피로 모델을 적용하여 비선형해석 프로그램을 개발하였고 원형 기둥 실험체에 대한 6개의 실험 결과를 대상으로 비선형 해석을 적용하고 제안모델의 정확성을 평가하였다.

강봉으로 긴장한 프리캐스트 원형교각의 설계 (Design of Precast Circular Piers with Prestressing Bars)

  • 심창수;정철헌;윤재영;김철환;이용진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.121-124
    • /
    • 2008
  • 교량 하부의 급속시공 기술은 교량 설계의 새로운 경향이다. 부착 강봉으로 프리스트레스를 도입하는 프리캐스트 교각 시스템을 제안한다. 이 논문에서는 부착 강봉으로 프리스트레스가 도입된 프리캐스트 원형 교각의 준정적 실험을 통해 내진 성능 평가를 하였다. 기둥의 세그먼트 연결부의 전단강도 보강을 위해 모르터로 충전된 원형강관을 사용하였다. 프리캐스트 교각의 변위연성도와 에너지 소산능력을 평가하였다. 제안된 프리캐스트 교각 시스템은 요구연성도보다 더 좋은 내진성능을 보였다. 실험적 연구를 바탕으로 경전철 교량의 하부구조를 설계하고, 설계 고려사항에 대해 검토하였다.

  • PDF

Purification and Characterization of Recombinant Human Interferon Alpha 2a Produced from Saccharomyces cerevisiae

  • Rae, Tae-Ok;Chang, Ho-Jin;Kim, Jung-Ho;Park, Soon-Jae
    • BMB Reports
    • /
    • 제28권6호
    • /
    • pp.477-483
    • /
    • 1995
  • The recombinant human interferon alpha 2a ($rhIFN-{\alpha}2a$), expressed in Saccharomyces cerevtsiae, was purified from insoluble aggregates. The inclusion body of $rhIFN-{\alpha}$ was solubilized by guanidine salt in the presence of disulfide reducing agent. The refolding of denatured $rhIFN-{\alpha}2a$ was achieved by simple dilution. The authentic interferon alpha, which has two correctly matched disulfide bonds, was seperated from incompletely oxidized $IFN-{\alpha}$ and dimeric $IFN-{\alpha}$ by use of a CM-Sepharose column, followed by size exclusion columns at two different pH conditions. The purified protein has been subjected to detailed physicochemical characterization including sequence determination. Unlike other $rhIFN-{\alpha}2a$ from E. coli reported, the $rhIFN-{\alpha}2a$ from S. cerevisiae has no methionine residue at its N-terminus originating from the start codon, ATG. The pI of the protein was determined to be 6.05 with a single band in the pI gel, which demonstrated that the purified $rhIFN-{\alpha}$ was homogeneous. The structural study using circular dichroism showed that the protein retains its three dimensional structure in the wide range of pH conditions between pH 3 and 9, and only minor strucural deformation was observed at pH 1.0.

  • PDF

Numerical analysis of the axially loaded concrete filled steel tube columns with debonding separation at the steel-concrete interface

  • Chen, Shiming;Zhang, Huifeng
    • Steel and Composite Structures
    • /
    • 제13권3호
    • /
    • pp.277-293
    • /
    • 2012
  • The interaction between steel tube and concrete core is the key design considerations for concrete-filled steel tube columns. In a concrete-filled steel tube (CFST) column, the steel tube provides confinement to the concrete core which permits the composite action among the steel tube and the concrete. Due to construction faults and plastic shrinkage of concrete, the debonding separation at the steel-concrete interface weakens the confinement effect, and hence affects the behaviour and bearing capacity of the composite member. This study investigates the axial loading behavior of the concrete filled circular steel tube columns with debonding separation. A three-dimensional nonlinear finite element model of CFST composite columns with introduced debonding gap was developed. The results from the finite element analysis captured successfully the experimental behaviours. The calibrated finite element models were then utilized to assess the influence of concrete strength, steel yield stress and the steel-concrete ratio on the debonding behaviour. The findings indicate a likely significant drop in the load carrying capacity with the increase of the size of the debonding gap. A design formula is proposed to reduce the load carrying capacity with the presence of debonding separation.