• Title/Summary/Keyword: Circuit topology

Search Result 526, Processing Time 0.028 seconds

A Study on Circuit Topology Design for Alarm System Development of Series Arc Fault (직렬 아크사고 경보시스템 개발을 위한 회로 토플로지 설계에 관한 연구)

  • Jung, M.S.;Kwak, D.K.;Choi, J.K.;Kim, K.S.;Park, Y.J.
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.38-39
    • /
    • 2016
  • Most of fires are electric fires and 78.65% of those fires are caused by electric arc fault. This series arc fault can be caused not only by decrepit wire, pressed wire or contact badness etc. anywhere we use electricity. There are signs of heat release and flame discharge before the arc fire accident happens. This paper proposes a circuit topology for alarm system of series arc fault. We also verify the qualification of system through various arc fault simulator.

  • PDF

Current Fed H.F Inverter Topology with VVVF Function (VVVF 기능을 가진 전류형 고주파 인버터 회로 Topology)

  • Lee, Bong-Seop;Kim, Dong-Hee;Shin, Soo-Kug;Gu, Tae-Guen;Bae, Gi-Hun;So, Jung-Hun
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.321-323
    • /
    • 1996
  • In this paper, it introduces a several circuit type of current-fed Full Bridge high frequence inverter with VVVF function. These inverter circuit presents various output control method according to on/off signal pattern of switches. also, It is certify that the accordance of characteristics is compared theoretical waveform with experimental results according to each signal pattern.

  • PDF

ZVT boost converter with minimizing conduction losses of the main switch (주 스위치의 전도손실을 최소화한 ZVT 부스터 컨버터)

  • Chin Gi-Ho;Kang Ahn-Jong;Kim Tae-Woo;Kim Hack-Sung
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.95-98
    • /
    • 2003
  • A ZVT PWM Boost Converter is proposed to reduce current stresses and conduction losses of main switch in a conventional circuit. By attaching resonant inductor Lr1 in parallel with capacitor Cr, the resonant circulating current is diverted to the additional component and then the main switch is subjected to minimum current stresses same as those in their PWM counterparts. Moreover, the operation of the auxiliary switch in a half wave mode to prevent reverse resonant energy from freewheeling can be able to lessen the conduction losses. The operation principles of the proposed converters are analyzed using the PWM boost converter topology as an example. Theoretically analysis and experimental results verify the validity of the boost converter topology with the proposed circuit.

  • PDF

A Study on the channel characteristics of the household AC power line used for the low bit rate communication home network (전력선 통신 응용을 위한 저압 댁내망의 채널 특성 분석 기법에 관한 연구)

  • Ahn, N.H.;Chang, T.G.;Hwang, K.T.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.305-307
    • /
    • 2001
  • In this paper, the household AC power line network is characterized for the low bit rate power line communication (PLC) in the frequency range from 10kHz to 450kHz. Various types of electric apparatus and the power lines constitute the network topology, and the PLC channel transfer function and the channel impedance are derived based on the constructed network topology. The channel characteristics derived with the lumped circuit model and the distributed circuit model are compared using the computer simulations. The effect of the wave reflection and signal distortions are also investigated.

  • PDF

Dynamic Voltage Restorer(DVR) with a Z-Source AC Converter Topology (Z-소스 교류 컨버터 토폴로지의 동적 전압 보상기)

  • Lim, Young-Cheol;Jung, Young-Gook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.9
    • /
    • pp.36-43
    • /
    • 2010
  • This paper proposes a new type of voltage sag-swell compensator based on a Z-source AC-AC converter. The proposed topology employs a pulse width modulation (PWM) Z-source AC-AC converter along with a injection transformer. A safe commutation strategy is used to eliminate voltage spikes on switches without snubber circuit. During a voltage sag or swell, the proposed system controls the adding or missing voltage and maintains the rated voltage of sinusoidal waveform at the terminals of the critical loads. The proposed system is able to compensate 20[%] voltage swell and is also able to compensate 60[%] voltage sag. In order to control and detect the voltage sag and swell, the peak voltage detection method is applied. Also, the operating principles of the proposed system are described, and a circuit analysis is provided. Finally, PSIM simulation and experimental results are presented to verify the proposed concept and theoretical analysis.

Shape Optimization of a Thomson Coil Actuator for Fast Response Using Topology Modification

  • Li, Wei;Koh, Chang-Seop
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.330-335
    • /
    • 2012
  • The shape optimization of a Thomson coil actuator used in an arc eliminator is done for fast response by adopting topology modification method. The displacement of the plate in a fixed calculation time is taken as the objective function. The objective function and contribution factor are calculated by using an adaptive equivalent circuit method which has been proved accurate and efficient. Both shape optimization and performance analysis are accomplished based on the segmentation of plate. Through the refinement of the sensitive segments a precise optimal plate shape can be obtained. The effectiveness of the proposed method is proved by the comparison of results before and after the shape optimization.

Shape Optimization of a Thomson Coil Actuator for Fast Response Using Topology Modification

  • Li, Wei;Koh, Chang-Seop
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.58-63
    • /
    • 2012
  • The shape optimization of a Thomson coil actuator used in an arc eliminator is done for fast response by adopting topology modification method. The displacement of the plate in a fixed calculation time is taken as the objective function. The objective function and contribution factor are calculated by using an adaptive equivalent circuit method which has been proved accurate and efficient. Both shape optimization and performance analysis are accomplished based on the segmentation of plate. Through the refinement of the sensitive segments a precise optimal plate shape can be obtained. The effectiveness of the proposed method is proved by the comparison of results before and after the shape optimization.

Novel Zero-Voltage-Switching Bridgeless PFC Converter

  • Haghi, Rasool;Zolghadri, Mohammad Reza;Beiranvand, Reza
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.40-50
    • /
    • 2013
  • In this paper, a new zero-voltage-switching, high power-factor, bridgeless rectifier is introduced. In this topology, an auxiliary circuit provides soft switching for all of the power semiconductor devices. Thus the switching losses are reduced and the highest efficiency can be achieved. The proposed converter has been analyzed and a design procedure has been introduced. The control circuit for the converter has also been developed. Based on the given approach, a 250 W, 400 Vdc prototype converters has been designed at 100 kHz for universal input voltage (90-264 Vrms) applications. A maximum efficiency of 94.6% and a power factor correction over 0.99 has been achieved. The simulation and experimental results confirm the design procedure and highlight the advantages of the proposed topology.

A Study on the ZVT PFC for Using 3[KW] Power Amplifier (Power Amp.용 3KW급 ZVT PFC 개발)

  • Lee, S.R.;Jeong, C.G.;Kim, S.W.;Ko, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1306-1308
    • /
    • 2000
  • A new ZVT PFC for using 3[KW] power amplifier is proposed. Generally, the single phase diode rectifier has been widely used in the SMPS of the conventional power amplifier. But this rectifier has occurred some problems which are the input power factor and current harmonics. To solve the above problems, in this paper, two topology is adopted. The one is the boost type PFC for improving the input power factor. The other is the ZVT resonant circuit for reducing the switching loss and stress. In this paper, the proposed topology is analyze designed to built the ZVT PFC for using 3[KW] power amplifier. In order to verify the circuit va finally, the PSPICE simulation and experiment results are presented.

  • PDF

A Study for improvement of Efficiency of Full-Bridge Converter using Non-Contact Method (무접점 풀브리지컨버터의 효율향상을 위한 연구)

  • Lim Sung-Hun;Joo Yeon-Hong;Lee Seong-Ryong;Han Byoung-Sung
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.90-93
    • /
    • 2001
  • This paper suggests the circuit topology to transfer AC power using a detachable transformer The circuit topology for AC output load through the magnetic coupling and its principle of operation are described. It can decrease the size of detachable transformer by employing the high-frequency magnetic coupling. It is shown in this paper that the efficiency of noncontact energy transfer system can be improved by applying both the full bridge converter with PFC function to the 1st side of its and the series resonance to the 2nd side to minimize the effect of the leakage inductance.

  • PDF