• Title/Summary/Keyword: Circuit break

Search Result 77, Processing Time 0.028 seconds

The Coating Materials of Electrode Materials on Machinability of W-EDM (와이어전극의 도금재료가 W-EDM 가공성에 미치는 영향)

  • 김창호;허관도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.735-738
    • /
    • 2000
  • The characteristics of wire electrical discharge machining (WEDM) are governed by many factors such as the power supply type, operating condition and electrode material. This work deals with the effect of wire electrode materials on the machining characteristics such as, metal removal rate, surface characteristics and surface roughness during WEDM A wire's thermal physical properties are melting point, electrical conductivity and vapor pressure. One of the desired qualities of wire is a low melting point and high vapor pressure to help expel the contaminants from the gap. They are determined by the mix of alloying elements (in the case of plain brass and coated wire) or the base core material(i.e. molybdenum). Experiments have been conducted regarding the choice of suitable wire electrode materials and influence of the properties of these materials on the machinability and surface characteristics in WEDM, the experimental results are presented and discussed from their metallurgical aspect. And the coating effect of various alloying elements(Au, Ag, Cu, Zn, Cr, Mn, etc.) to the Cu or 65-35 brass core on them was reviewed also. The removal rate of some coated wires are higher than that of 65-35 brass electrode wire because the wire is difficult to break due to the wire cooling effect of Zn evaporation latent heat and the Zn oxide on the surface is effective in preventing short circuit. The removal rate increases with increasing Zn content from 35, 40 and Zn coated wire

  • PDF

Development of the Spark-gap Switch with Dual Trigger System (쌍방향 시동방식의 고속투입스위치 개발)

  • Kim, Maeng-Hyeon;Seo, Yun-Taek;Park, Seung-Jae;Park, Byeong-Rak;Go, Ui-Seok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.7
    • /
    • pp.359-364
    • /
    • 2000
  • This paper is introducing a newly developed spark-gap switch with dual trigger system, into which the current from the voltage source is injected along with the test sequence during the synthetic testing of high voltage circuit-breaker. The currently-used spark gap switch is narrow in operating range due to the use of the method of triggering energy being injected by single way. As a result, the frequent happening of misoperation has greatly reduced the test quality and test efficiency and has required the cost of maintenance excessively. In this study, accordingly, in order to basically remove these problems, another triggering system is installed to the opposite direction on the existing triggering system; attaching the same time and the same rising time of pulse wave as on the existing system, so that at a comparatively trigger gap distance from the main electrode(the gap can be operated at 60% of self-break voltage, while at 80% in the current system), the main electrode has been enabled to be closed by the development of spark gap switch with dual trigger system.

  • PDF

The Analysis of Axisymmetric Field Problem by C-1 FEM (C-1 유한요소법에 의한 축대칭장 문제의 해석)

  • Jang, I.K.;Kwak, D.S.;Shin, H.K.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.21-23
    • /
    • 1999
  • In this paper, the analysis of the electric field in the chamber of high voltage $SF_6$ GCB(Gas Circuit Breaker) is presented by using C-1 FEM. For this purpose, pre-processing program and post-processing program were developed for axisymmetirc 3 dimensional analysis and the electric field in cylindric chamber was analyzed. Important problem is that electric analysis must be considered coronal due to break-down of $SF_6$ when it is cutted off. To solve this problem, a procedure is needed to verify that the solution of Poisson's equation for scalar potential satisfy charge continuos condition because of using first order element os not satisfy the electric continuous condition, C-1 FEM is introduce to obtain electirc potential and electric field at the same time. Analysis of the distribution of electric field on model was done. It is confirmed that the developed program in this paper applicable to design and to analyze of characteristics in total program as electric characteristics analysis routine.

  • PDF

An Experimental Study on the Minimum Ignition Energy in Low Voltage Spark Discharge by Electrode Material (방전전극 재질과 최소점화에너지에 관한 실험 연구)

  • Choi, Sang-Won
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.3
    • /
    • pp.63-70
    • /
    • 2012
  • In the hazardous areas where explosive gases, vapor or mists exist, electrical apparatus and installations must be the explosion-proof construction to prevent or limit the danger of the ignition of potentially explosive atmosphere. In Korea, nine types of protection have been specified in the government regulations at present: flameproof enclosure, pressurization, oil immersion, increased safety, intrinsic safety, non-incendive, powder filling, encapsulation, and special types. Among these types, the intrinsic safety has the construction which limit or by-pass igniting the electric energy using electronic devices. This type has lots of merits but at the same time requires a high-degree of technology. In this paper, we investigated several dominating factors which affect the minimum ignition energy; this energy plays a very important role in design and evaluation of the intrinsic safety type electrical apparatus. Electrode material, which is one of the most important factors, was intensively studied for the five sorts of material(Al, Cd, Mg, Sn, and Zn) with performing experiment in a low-voltage inductive circuit using IEC-type(International Electro-technical Commission) spark apparatus. The experimental results show that the minimum ignition energy of electrode material is varied: highest in Cd and lowest in Sn. We also confirmed the effect of electrode make-and-break speed.

A Study on Driving and simulation in Extending Break Power of The PMSM using series Resistor (PMSM의 직렬저항을 사용한 제동력 확보 운전과 시뮬레이션에 관한 연구)

  • Hwang, Lark-Hoon;Kim, Young-Bog;Na, Seung-Kwon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.4
    • /
    • pp.191-197
    • /
    • 2012
  • In this paper, method using electric braking from stop area to high-speed area was presented in order to improve air-brake. And electric braking method can be improved environmental problems, efficiency, economy, etc.. Method for electrical complete braking are two ways that method of inserting series resistance between the motor and the inverter, and method of inverter output voltage increase. In this paper, use series resistance insert method because economical and easy to apply. In addition, Series resistor is used short circuit method for reduce the power loss. In improved efficiency and the laboratory environment for secure braking, resistance insert method and inverter output voltage increase method showed same characteristics in all areas.

A Study on Drive in Extending Break Power of The PMSM using series Resistor (영구 자석형 동기전동기(PMSM)의 직렬저항을 사용한 제동력 운전 확보에 관한 연구)

  • Hwang, Lark Hoon;Na, Seung Kwon;Kim, Young Bog
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.3
    • /
    • pp.127-137
    • /
    • 2012
  • In this paper, method using electric braking from stop area to high-speed area was presented in order to improve air-brake. And electric braking method can be improved environmental problems, efficiency, economy, etc. Method for electrical complete braking are two ways that method of inserting series resistance between the motor and the inverter, and method of inverter output voltage increase. In this paper, use series resistance insert method because economical and easy to apply. In addition, Series resistor is used short circuit method for reduce the power loss. In improved efficiency and the laboratory environment for secure braking, resistance insert method and inverter output voltage increase method showed same characteristics in all areas.

The Effectiveness Analysis of the Resistive Leakage Current Monitoring by Analyzing the Phase of the Body Current (인체 통전전류 위상 분석을 통한 저항성 누설전류 감시의 유효성 분석)

  • Kim, Jae-Hyun;Lim, Young-Bea;Lee, Sang-Ick;Kim, Dong-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.9
    • /
    • pp.90-99
    • /
    • 2013
  • To analyze the effectiveness of the resistive leakage current monitoring as a technology preventing electrical accidents, in this paper, we have estimated the phase of the body impedance by using the body impedance model and the body impedance data from IEC. We also have analyzed the phase of the electric body current in the case of 60Hz/220V. From these results, we concluded that deliberate researches about the phase of the electrical body current and related regulations must be carried out before the resistive leakage current monitoring unit is used to protect electric shock. And we concluded that the resistive leakage current monitoring unit can be utilized to prevent electrical fires caused by electric leakage current without unwanted circuit break due to capacitive leakage current flowing from line filter capacitors to the earth.

Implementation of a new empirical model of steam condensation for the passive containment cooling system into MARS-KS code: Application to containment transient analysis

  • Lee, Yeon-Gun;Lim, Sang Gyu
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3196-3206
    • /
    • 2021
  • For the Korean design of the PCCS (passive containment cooling system) in an innovative PWR, the overall thermal resistance around a condenser tube is dominated by the heat transfer coefficient of steam condensation on the exterior surface. It has been reported, however, that the calculated heat transfer coefficients by thermal-hydraulic system codes were much lower than measured data in separate effect tests. In this study, a new empirical model of steam condensation in the presence of a noncondensable gas was implemented into the MARS-KS 1.4 code to replace the conventional Colburn-Hougen model. The selected correlation had been developed from condensation test data obtained at the JERICHO (JNU Experimental Rig for Investigation of Condensation Heat transfer On tube) facility, and considered the effect of the Grashof number for naturally circulating gas mixture and the curvature of the condenser tube. The modified MARS-KS code was applied to simulate the transient response of the containment equipped with the PCCS to the large-break loss-of-coolant accident. The heat removal performances of the PCCS and corresponding evolution of the containment pressure were compared to those calculated via the original model. Various thermal-hydraulic parameters associated with the natural circulation operation through the heat transport circuit were also investigated.

Evaluation of Breaking Performance of New Contact Material for the Vacuum Interrupter (진공인터럽터용 신규 접점소재에 대한 차단 성능 평가)

  • Cha, Young-Kwang;Lee, Il-Hoi;Ju, Heung-Jin;Shin, Tae-Yong;Park, Kyong-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.1
    • /
    • pp.50-55
    • /
    • 2021
  • Copper-chromium alloys have been used as contact materials of vacuum interrupters in circuit breakers, but new materials with highly stable performance are required to break the high voltage and high current barrier due to the recent increase in breaking capacity. In this paper, a new contact material was fabricated from a ternary alloy instead of existing Cu-Cr alloys. Its breaking performance and endurance were verified from a synthetic test and compared with that of various contact materials. The test results verified that the breaking performance of the new contact material was excellent.

Effects on Balance and Gait for Chronic Stroke Patients with Side Walking Training (만성 뇌졸중 환자에게 측방 보행 훈련이 균형과 보행에 미치는 영향)

  • Kim, Inseop;Jeon, Seungjae;Lee, Geoncheol;An, Byungwook
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.1 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • Purpose : The purpose of this study is to investigate the impact on the ability to walk, balance after side walking training of hemiplegic patients caused by stroke. Method : The subjects were training before stroke onset whether more than one year elapsed 15 patients with chronic stroke patients, and Berg balance scale(BBS) and Timed up and go test(TUG), Functional reaching test(FRT), 20m walking time 200m walking time were measured and recorded. Training period, a total of three weeks, and training frequency circuit training times 10 minutes per training, 5-minute break, the 10-minute training total 25-minute training was conducted. Gait line of 3m to be based on the patient's side walking, and the risk of falling compared to the presence of the experimenter trained under was carried out. Result : 1. TUG, 2. 20m walking time, 3. 200m walking time 4. FRT, 5. All showed significant improvement in BBS. Judging from the results, the side walking training conducted three weeks due to chronic stroke hemiplegic patient's ability to balance and showed a positive effect on the improvement of walking ability. Conclusion : Accordingly, it was more effective to train hemiplegic patients with chronic stroke on side walking.