• Title/Summary/Keyword: Circuit Parameter

Search Result 689, Processing Time 0.028 seconds

A Characteristic Analysis of Current-Fed Push Pull type DC-DC converter using LCCC Resonant circuit and ZVS function (LCCC 공진회로와 ZVS 기능을 동시에 갖는 전류형 Push Pull DC-DC 컨버터의 특성해석)

  • An, Hang-Mock;Hwang, Gye-Ho;Lee, Dal-Hae;Nam, Seung-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1324-1326
    • /
    • 2000
  • This paper proposes a Current-Fed Push Pull type DC-DC converter using LCCC Resonant circuit and Zero Voltage Switching function to reduce turn on and off loss at the switching instants. This paper have the advantage which is able to operating safely in load short, because of DC reactor is connected with resonance reactor in order to supply a fixed current with low ripple from DC Power supply. The capacitor ($C_1$, $C_2$) connected in switch are common using as resonance capacitor and ZVS capacitor. The analysis of the proposed Current-Fed Push Pull type DC-DC converter is generally described by using normalized parameter, and we have evaluated characteristic values which is needed to design a circuit. We confirm a rightfulness theoretical analysis by comparing a theoretical values and experimental values obtained from experiment using MOSFET as switching devices.

  • PDF

Analysis of Via Fence Effects in PCB Transmission Lines (PCB 전송선에서 비아 펜스의 효과 분석)

  • Kim Jong-Ho;Park Sang-Wook;Ju Jae-Cheol;Park Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.4 s.95
    • /
    • pp.402-409
    • /
    • 2005
  • In analog and digital electronic systems, crosstalk between transmission lines on the printed circuit board can degrade the performance of equipment operations. This paper presents a technique to analyze the effects of via fence, which is based on additional transmission lines grounded by vias. The technique is composed of a circuit concept approach for transmission line sections md an impedance modeling of via hole sections. All sections are represented by ABCD parameters and they are cascaded. Finally, this technique was verified by comparing the measurement results with the simulation ones.

Development of a Pneumatic Servomechanism Using a Direct-connected Circuit between Inlet and Outlet and Its Application to the Design of a Fuzzy Position Controller for a Fingering System (흡배기구 직결회로를 이용한 공압 서보장치의 개발과 집게 시스템용 퍼지제어기 설계)

  • Choi, Kap-Yong;Choi, In-Soo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.21 no.4
    • /
    • pp.593-608
    • /
    • 1995
  • In this study two issues are considered, one is to develop a pneumatic servomechanism using a direct-connected circuit between inlet and outlet, the other is to design two kinds of advanced controllers such as fuzzy and PID controllers for a fingering system. Besides, the application of the advanced controllers to the newly proposed servomechanism is presented. The procedure of this study is composed of following 6 steps : [Step 1] Structuring of a control system; [Step 2] Development of a pneumatic circuit for the servomechanism ; [Step 3] Characteristic analysis of the valve and cylinder systems ; [Step 4] Determination of optimal parameters of the PID controller ; [Step 5] Design of a fuzzy controller and parameter tuning; and, [Step 6] Experimental analysis of fuzzy and PID controllers. Experimental results show that the newly proposed pneumatic servomechanism has good performance and, not only the performance of the fuzzy controller is better than that of the PID controller but also the fuzzy controller fits well to the control of the pneumatic servomechanism.

  • PDF

A Study on the Reliability and Optimal Control of Half-Bridge Inverter for Induction Beating System (유도 가열용 Half-Bridge 인버터 시스템의 신뢰성 향상 및 최적제어에 관한 연구)

  • 유상봉
    • Journal of the Korean Professional Engineers Association
    • /
    • v.33 no.1
    • /
    • pp.94-105
    • /
    • 2000
  • The purpose of this paper is to obtain the improved reliability and optimal control of the half-bridge inverter for induction heating system. Parasitic inductance components within the inverter circuit for induction heating including the loss-less turn-off snubber capacitor considerably affect stable operation and noise level of the system. This paper analyzes the effect of the inductance in detail and presents a new snubber configuration suitable for the half-bridge inverter to effectively reduce it. In the half-bridge inverter for induction heating the capacity of the loss-less snubber capacitor determines the switching losses because the zero voltage turn-on switching is used. However, the increase of the capacitor is limited by the system specifications, so that it is not easy work to reduce the switching loss. To effectively overcome the limitation, this paper introduces an active auxiliary resonant circuit suitable for the half-bridge inverter circuit, which operates actively according to the variation of load condition. It is also one of the most important study issues for the half-bridge inverter driven induction heater that the development of optimal control scheme considering varied load condition should be achieved. The control strategy ensures a very stable operation of overall inverter system and zero voltage turn-on switching irrespective of sensitive load parameter variations, in particular, even under the non-magnetic materials.

  • PDF

Efficiency Optimization with a Novel Magnetic-Circuit Model for Inductive Power Transfer in EVs

  • Tang, Yunyu;Zhu, Fan;Ma, Hao
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.309-322
    • /
    • 2018
  • The technology of inductive power transfer has been proved to be a promising solution in many applications especially in electric vehicle (EV) charging systems, due to its features of safety and convenience. However, loosely coupled transformers lead to the system efficiency not coming up to the expectation at the present time. Therefore, at first, the magnetic core losses are calculated with a novel magnetic-circuit model instead of the commonly used finite-element-method (FEM) simulations. The parameters in the model can be obtained with a one-time FEM simulation, which makes the calculation process expeditious. When compared with traditional methods, the model proposed in the paper is much less time-consuming and relatively accurate. These merits have been verified by experimental results. Furthermore, with the proposed loss calculation model, the system is optimized by parameter sweeping, such as the operating frequency and winding turns. Specifically, rather than a predesigned switching frequency, a more efficiency-optimized frequency for the series-parallel (SP) compensation topology is detected and a detailed investigation has been presented accordingly. The optimized system is capable of an efficiency that is greater than 93% at a coil separation distance of 200mm and coil dimensions of $600mm{\times}400mm$.

A Study on the Design of PLL for Improving of Characteristics of Locking Time and Jitter (Locking Time과 Jitter 특성의 개선을 위한 PLL 설계에 관한 연구)

  • Park, Jae-Boum;Park, Yun-Sik;Kim, Hwa-Young;Sung, Man-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1188-1191
    • /
    • 2003
  • In this paper, we focus our attention on the improvement of locking time and jitter parameter and propose the new structure of PLL which combined with the FVC, FOVI Matcher(FVC-Output and VCO-input Matching Circuit), Control Circuit and the conventional charge pump PLL. Using fast operation characteristics of the FVC, the circuit matching FVC-Output and VCO-input (FOVI Matcher) made to synchronize very fast. Fast locking time is usually required for application where the PLL has to settle rapidly if they switch from an idle mode to a normal mode and to track high-frequency data bit rate in data recovery systems. After a fast acqusition is achieved by the using the FVC, the conventional PLL operates for removing the phase error between the reference signal and the feedback signal. Therefore this structure can improve the trade-off between acquisition behavior and locked behavior.

  • PDF

Evaluation of thermal-hydraulic performance and economics of Printed Circuit Heat Exchanger (PCHE) for recuperators of Sodium-cooled Fast Reactors (SFRs) using CO2 and N2 as working fluids

  • Lee, Su Won;Shin, Seong Min;Chung, SungKun;Jo, HangJin
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1874-1889
    • /
    • 2022
  • In this study, we evaluate the thermal-hydraulic performance and economics of Printed Circuit Heat Exchanger (PCHE) according to the channel types and associated shape variables for the design of recuperators with Sodium-cooled Fast Reactors (SFRs). To perform the evaluations with variables such as the Reynolds number, channel types, tube diameter, and shape variables, a code for the heat exchanger is developed and verified through a comparison with experimental results. Based on the code, the volume and pressure drop are calculated, and an economic assessment is conducted. The zigzag type, which has bending angle of 80° and a tube diameter of 1.9 mm, is the most economical channel type in a SFR using CO2 as the working fluid. For a SFR using N2, we recommend the airfoil type with vertical and horizontal numbers of 1.6 and 1.1, respectively. The airfoil type is superior when the mass flow rate is large because the operating cost changes significantly. When the mass flow rate is small, volume is a more important design parameter, therefore, the zigzag type is suitable. In addition, we conduct a sensitivity analysis based on the production cost of the PCHE to identify changes in optimal channel types.

Performance Analysis and Equivalent Circuit Extraction for Magnetic Resonance Type Wireless Power Transfer (자기공진방식 무선전력전송 등가회로 추출 및 특성 분석)

  • Park, Dae Kil;Kim, Young Hyun;Koo, Kyung Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.4
    • /
    • pp.371-376
    • /
    • 2017
  • In this paper, we propose a magnetic resonant WPT(wireless power transfer) scenario using a large coil resonating at 6.78 MHz, and compare the characteristics through a three-dimensional electromagnetic field simulation and a magnetic resonant WPT equivalent circuit. The magnetic resonant WPT equivalent circuit proposed in this paper considers the parasitic capacitance generated between the coils in addition to the conventional equivalent circuit. Based on this analysis, we fabricated the magnetic resonant WPT coil and compared it with simulation prediction. As a result of comparison, the transfer characteristics and the resonance frequency shift can be predicted. Error proposed characteristics of equivalent circuit for the magnetic resonant WPT and the measured values are estimated to be ${\Delta}{\mid}S11{\mid}=1.31dB$ and ${\Delta}{\mid}S21{\mid}=1.21dB$, respectively.

A Active Replica LDO Regulator with DC Matching Circuit (DC정합회로를 갖는 능동 Replica LDO 레귤레이터)

  • Ryu, In-Ho;Bang, Jun-Ho;Yu, Jae-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2729-2734
    • /
    • 2011
  • In this paper, an active replica Low-dropout(LDO) regulator with DC voltage matching circuit is presented. In order to match the voltage between replica and output of regulator, DC voltage matching circuit is designed. The active replica low dropout regulator has higher Power Supply Rejection(PSR) than that of conventional regulator. The designed DC voltage matching circuit can reduce the drawback that may be occurred in replica regulator. And using fully active element in regulator can reduce the chip area and heat noise with resistor. As results of HSPICE simulation with 0.35um CMOS parameter, the designed active replica LDO regulator achieves Power Supply Rejection, -28@10Hz better than -17@10Hz of conventional replica regulator without DC matching circuit. And the output voltage is 3V.

The Study of Determination to Equivalent Circuit Parameters for Single phase Induction Motor using MATLAB (매트랩을 이용한 단상유도전동기 등가회로 정수 산출에 관한 연구)

  • Lee, Byung-Sun;Kim, Yang-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.1
    • /
    • pp.125-130
    • /
    • 2007
  • Single-phase is used widely power of field of appliance because can use commercialized power directly without power transform. Specially, because condenser nu-drive style single-phase induction motor efficiency is excellent, and most suitable in embodiment as economical. It is established true that method by crossing self-discipline and method by revolving magnetic field are interpretation of net single-phase induction motor, but method to calculate electric motor inside proper move in existent theory or method is some complex. That arbor in the law of circuit constant that combine equivalent circuit law with numerical analysis law according to development of the latest computer or microprocessor is suggested and does the calculation processing fast and correct. In this paper, measurement wishes to present method that calculate after calculate digital measurement that measures correctly and measures impossible the first and the second leakage reactance and no-load test locked-rotor test, DC test and resistance measurement of stator winding in circuit parameter calculation program that is had for MatLab program individually in single-phase power.