• Title/Summary/Keyword: Circuit Model Parameter

Search Result 215, Processing Time 0.026 seconds

DIRECT ESTIMATION OF PHYSICAL PARAMETERS OF AN RLC ELECTRICAL CIRCUIT BY SIXTEEN CONTINUOUS-TIME METHODS

  • Mensler, M.;Wada, K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.526-526
    • /
    • 2000
  • The present has a double objective. The first one is to compare and estimate sixteen continuous-time methods through the identificatiun of a system consisted with an RLC electrical circuit. These sixteen methods are classified into three groups that are the linear filters, the modulating functions and the integral methods. The second objective is to estimate directly the physical parameters of the RLC circuit, without resorting to a discrete-time model. The system is consisted of a coil with inductance L and resistance H, and of a capacitor with capacitance C. Having written the physical equations which describe the behavior of the system, the transfer function in where the initial conditions appear is given. These initial conditions should be taken into account during the parameter estimation phase, because they are inevitable within the framework of real signals. A physical interpretation of the identified models is tempted by the direct estimation of the physical parameters L and C. In conclusion, a classification of the studied methods is proposed.

  • PDF

Thermal Analysis using Thermal Equivalent Circuit Analysis and Finite Element Method of In-wheel Motor (In-wheel 전동기의 열 등가회로 해석 및 유한요소해법을 이용한 열해석)

  • Kim, Kyu-Seob;Lee, Byeong-Hwa;Hong, Jung-Pyo;Nam, Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.941-942
    • /
    • 2011
  • A thermal equivalent circuit of IPMSM considering eddy current loss of PM and core loss of rotor is proposed. This thermal equivalent model is represented by the thermal resistances and thermal capacitances. In order to determine the factor of each parameter, a heating test is processed. Additionally, the eddy current loss of PM is calculated by a transient 3D finite element analysis. Finally, this thermal equivalent model is verified by a temperature test in a 25kW 12-pole/18-slot IPMSM with varying load.

  • PDF

Design of Parameters for High Power Static Var Compensator Used Cascade Multilevel Inverter (직렬형 멀티레벨 인버터를 사용한 대용량 무효전력 보상장치의 파라메타 설계)

  • Min, Wan-Ki;Choi, Jae-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.52 no.4
    • /
    • pp.172-178
    • /
    • 2003
  • This paper examines the application of high voltage static var compensator(SVC) with cascade multilevel inverter which employs H-bridge inverter(HBI). This method has the primary advantage that the number of voltage levels can be increased for a given number of semiconductor devices when compared to the conventional control methods. The SVC system is modeled using the d-q transform which calculates the instantaneous reactive power. This model is used to design a controller and analyze the SVC system. From the mathematical model of the system, the design procedures of the circuit parameters L and C are presented in this thesis. To meet the specific total harmonic distortion(THD) and ripple factor of the capacitor voltage, the circuit parameters L and C are designed. Simulated and experimental results are also presented and discussed to validate the proposed schemes.

Vibration Reduction of the Optical Disk Drive Using Piezoelectric Shunt (압전 션트회로를 이용한 광 디스크 드라이브의 진동 저감)

  • 박종성;임수철;최승복;김재환;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.972-976
    • /
    • 2001
  • This paper presents a piezoelectric shunt methodology to reduce unwanted vibration of optical disk drive(O.D.D.). After briefly investigating a second-order mechanical vibration absorber model, the O.D.D. structure is incorporated with the piezoelectric shunt circuit. In order to identify modal parameter of the structure, a finite element analysis is undertaken. The parameters are optimally tuned on the basis of the circuit model. The displacement transmissibility is evaluated and compared with various resistance values.

  • PDF

Due to the Difference in Uniformity of Electrical Characteristics between Cells in a Battery Pack SOC Estimation Performance Comparative Analysis (배터리팩 내 셀 간 전기적 특성 균일도 차이에 의한 SOC 추정성능 비교분석)

  • Park, Jin-Hyeong;Lee, Pyeong-Yeon;Jang, Sung-Soo;Kim, Jonghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.1
    • /
    • pp.16-24
    • /
    • 2019
  • The performance of the battery management system (BMS) algorithm is important for ensuring the stability and efficient operation of battery packs. Such a performance is determined by the internal parameters of the electrical equivalent circuit model (EECM). This study proposes a performance improvement and verification of battery parameters for the BMS algorithm using electrical experiments and tools. The parameters were extracted through electrical characteristic experiments, and an EECM based on Ah counting was designed. Simulation results using the EECM were compared with actual experimental data to determine the best parameter extraction method.

A Comparative Analysis of Online Update Techniques for Battery Model Parameters Considering Complexity and Estimation Accuracy (배터리 모델 파라미터의 온라인 업데이트 기술 복잡도와 추정 정확도 비교 및 분석)

  • Han, Hae-Chan;Noh, Tae-Won;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.4
    • /
    • pp.286-293
    • /
    • 2019
  • This study compares and analyzes online update techniques, which estimate the parameters of battery equivalent circuit models in real time. Online update techniques, which are based on extended Kalman filter and recursive least square methods, are constructed by considering the dynamic characteristics of batteries. The performance of the online update techniques is verified by simulation and experiments. Each online update technique is compared and analyzed in terms of complexity and accuracy to propose a suitable guide for selecting algorithms on various types of battery applications.

Dielectric and Piezoelectric of Ceramic-Polymer Composite with Ceramic Particle Size (세라믹 분말 크기가 압전 세라믹-폴리머 복합체의 유전 및 압전 특성에 미치는 영향)

  • 이형규;김호기
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1989.06a
    • /
    • pp.63-65
    • /
    • 1989
  • Piezoelectric BaTiO$_3$-polymer composite were investigated for dielectric and piezoelectric properties with the barium titanate active particle size. Under the condition of the same density and ceramic volume ratio of composite, the dielectric and piezoelectric constant of composite are increasing as the ceramic particle size in composite are increasing. The surface layer model was quoted to explain these phenomena in our system and experimentally confirmed. The connectivity parameter of modified cube model of composite was calculated from the dielectric constant variation as their particle size. The connectivity parameter X and Y were 77.8% and 98.9% respectively. It means that the barium titanate particle distribution in composite nearly approach to the parallel mode. It was experimentally confirmed that the surface layer has low dielectric and nonferroelectric properties. Dielectric constant and thickness of surface layer were calculated from the equivalent circuit of composite.

  • PDF

A novel OCV Hysteresis Modeling for SOC estimation of Lithium Iron Phosphate battery (리튬인산철 배터리를 위한 새로운 히스테리시스 모델링)

  • Nguyen, Thanh Tung;Khan, Abdul Basit;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.75-76
    • /
    • 2016
  • The relationship of widely used Open circuit Voltage (OCV) versus State of Charge (SOC) is critical for any reliable SOC estimation technique. However, the hysteresis existing in all type of battery which has been come to the market leads this relationship to a complicated one, especially in Lithium Iron Phosphate (LiFePO4) battery. An accurate model for hysteresis phenomenon is essential for a reliable SOC identification. This paper aims to investigate and propose a method for hysteresis modeling. The SOC estimation is done by using Extended Kalman Filter (EKF), the parameter of the battery is modeled by Auto Regressive Exogenous (ARX) and estimated by using Recursive Least Square (RLS) filter to tract each element of the parameter of the model.

  • PDF

A Robust Fault Location Algorithm for Single Line-to-ground Fault in Double-circuit Transmission Systems

  • Zhang, Wen-Hao;Rosadi, Umar;Choi, Myeon-Song;Lee, Seung-Jae;Lim, Il-Hyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • This paper proposes an enhanced noise robust algorithm for fault location on double-circuit transmission line for the case of single line-to-ground (SLG) fault, which uses distributed parameter line model that also considers the mutual coupling effect. The proposed algorithm requires the voltages and currents from single-terminal data only and does not require adjacent circuit current data. The fault distance can be simply determined by solving a second-order polynomial equation, which is achieved directly through the analysis of the circuit. The algorithm, which employs the faulted phase network and zero-sequence network with source impedance involved, effectively eliminates the effect of load flow and fault resistance on the accuracy of fault location. The proposed algorithm is tested using MATLAB/Simulink under different fault locations and shows high accuracy. The uncertainty of source impedance and the measurement errors are also included in the simulation and shows that the algorithm has high robustness.

Mathematical Modeling and Simulation on the Control of Heart rate by Baroreceptor Control System in the Cardiovascular System (심혈관 시스템의 압수용체에 의한 심박동 제어의 수학적 모델링 및 시뮬레이션)

  • Choi, B.C.;Lee, S.J.;Eom, S.H.;Nam, G.K.;Lee, Y.W.;Jun, K.R.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.80-85
    • /
    • 1996
  • The various function of the cardiovascular system(CVS) and the dynamic characteristics on each part of human body can be acquired in the electric analog circuit model. According to the performed outcome by other researchers, viscos resistance, flow inertia, and vascular compliance in the CVS are analogous to resister, inductor, and capacitor in electric circuit, so the CVS models were represented by the electric circuit models. these approaches were to propose the suitable models interest part of body and to simulate the various characteristics on the CVS. In this paper, the electric circuit model considering the characteristics of morphologic structure is represented, the parameter values of model is sotted up, and the dynamic characteristics of the the CVS is simulated using VisSim, one of the simulation tools. The observed simulation results are similar to the cardiovascular functions of nomal adults who have no heart failure. Besides, the simulation is operated to observe the pathophysiological abnomal symptoms(for example, bleeding within a certain period). The controller by baroreceptor, which is one of controllers to control the CVS, is appended in the model. and the dynamic response characteristics and the procedure to return normal state is observed in simulation when the bleeding last within a certain period.

  • PDF