• Title/Summary/Keyword: Circuit Design and Modeling

Search Result 262, Processing Time 0.022 seconds

Integrated Circuit Design Using Multi-Characteristic Robust Design (다특성 강건설계법을 이용한 집적회로설계)

  • 김경모
    • Journal of Korean Society for Quality Management
    • /
    • v.28 no.1
    • /
    • pp.78-94
    • /
    • 2000
  • The ever increasing demands for enhanced competitiveness of engineered products require a "designing-in-quality" strategy that can effectively and efficiently incorporate concepts of uncertainty, quality, and robustness into design. Engineered design optimization approaches that are typically carried out with respect to a single objective become inadequate to address these multiple set of requirements. This paper presents a design metric for a multi-attribute robust design problem with designer′s preferences on the performance accuracy and the performance precision. The use of this design metric as the robust optimal design criterion in multi-stage experimentation and modeling technique is presented. The effectiveness of the overall design procedure and the performance of the proposed design metric are tested with the aid of IC design and the results are discussed.

  • PDF

High-Frequency Circuit Modeling of the Conducted-Emission from the LDC System of a Electric Vehicle (전기자동차 LDC 시스템의 전도 방출에 관한 고주파 모델링 연구)

  • Jung, Kibum;Jo, Byeong-Chan;Chung, Yeon-Choon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.8
    • /
    • pp.798-804
    • /
    • 2013
  • In this paper, conducted emission from the LDC(Low-Side DC/DC Converter) of a HEV/EV was analyzed using high-frequency circuit modeling in system-level approach. The conducted emission by PWM process(100 kHz; Switching Frequency) can cause RFI(Radio-Frequency Interference) problems in the AM/FM frequency range. In order to mitigate this conducted emission, a high-frequency equivalent circuit model is proposed by analyzing the fundamental circuits, parasitic components in their parts and connections and non-linear characteristics of MOSFETs, high-power capacitors, inverters, motors, high-power cables, and bus bars which are composed of the LDC. Using these circuit models, results of both simulation and measurement were compared and similarities between them were verified. We are looking forward that this approach can be effectively used in the EMC design of HEV/EV.

Application of HHT for Online Detection of Inter-Area Short Circuits of Rotor Windings of Turbo-Generators Based on the Thermodynamics Modeling Method

  • Wang, Liguo;Wang, Yi;Xu, Dianguo;Fang, Bo;Liu, Qinghe;Zou, Jing
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.759-766
    • /
    • 2011
  • This paper focuses on monitoring and predicting the short circuit faults of the rotor windings of large turbo-generator systems. For the purpose of increasing efficiency and decreasing maintenance cost, a method that combines the HHT (Hilbert Huang Transform) with a wavelet has been studied. This method is based on analyzing a classical Albright detecting coil. Due to the Empirical Mode Decomposition (EMD) and the Intrinsic Mode Functions (IMF) of the HHT the exact location of a short circuit of rotor windings may be given. However, a part of the useful information is eliminated by the unreasonable decomposing scale of the wavelet. Based on the thermodynamics modeling method, this study was illustrated with a 50MW turbo-generator system that is installed in Northern China. The analysis results, which have very good agreement with those of a previous study, show that the method of combining the HHT with a wavelet is an effective way to analyze and predict the short circuit faults of the rotor windings of large generators, such as supercritical turbo-generator systems and wind turbo-generator systems. This work can offer a useful reference for analyzing smart grids by improving the power quality of a distribution network that is supplied by a turbo-generator system.

Steady-State Harmonic Domain Matrix-Based Modeling of Four-Quadrant EMU Line Converter

  • Wang, Hui;Wu, Mingli;Agelidis, Vassilios G.;Song, Kejian
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.572-579
    • /
    • 2014
  • As a non-linear time variant system, the four-quadrant line converter of an electric multiple unit (EMU) was expressed by linear time periodic functions near an operating point and modeled by a steady-state harmonic domain matrix. The components were then combined according to the circuit connection and relations of the feedback control loops to form a complete converter model. The proposed modeling method allows the study of the amplitude of harmonic impedances to explore harmonic coupling. Moreover, the proposed method helps provide a better design for the converter controllers, as well as solves the problem in coordination operation between the EMUs and the AC supply. On-site data from an actual $CRH_2$ high-speed train were used to validate the modeling principles presented in the paper.

New Approach for Transient Radiation SPICE Model of CMOS Circuit

  • Jeong, Sang-Hun;Lee, Nam-Ho;Lee, Jong-Yeol;Cho, Seong-Ik
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1182-1187
    • /
    • 2013
  • Transient radiation is emitted during a nuclear explosion and causes fatal errors as upset and latch-up in CMOS circuits. This paper proposes the transient radiation SPICE models of NMOS, PMOS, and INVERTER based on the transient radiation analysis using TCAD (Technology Computer Aided Design). To make the SPICE model of a CMOS circuit, the photocurrent in the PN junction of NMOS and PMOS was replaced as current source, and a latch-up phenomenon in the inverter was applied using a parasitic thyristor. As an example, the proposed transient radiation SPICE model was applied to a CMOS NAND circuit. The CMOS NAND circuit was simulated by SPICE and TCAD using the 0.18um CMOS process model parameter. The simulated results show that the SPICE results were similar to the TCAD simulation and the test results of commercial CMOS NAND IC. The simulation time was reduced by 120 times compared to the TCAD simulation.

Circuit Modeling of Transition from Stripline to Dual Slotline for the Notch Antenna

  • So, Joon-Ho;Kim, Jun-Yeon;Lee, Moon-Que;Cheon, Chang-Yul
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.2 no.1
    • /
    • pp.22-29
    • /
    • 2003
  • A circuit model for the transition of stripline to dual slotline and a segmented method to analyze a notch antenna are presented. For the circuit model of the transition, the characteristic impedance, dispersions, and the shorted impedance of dual slotline are calculated and approximated with the closed-form expressions. The segmented analysis method allows to get readily an optimized results for the dual slotline-fed notch antenna. As a design example, a notch antenna is segmented into a 4'h order Marchand balun and a dual slot 134 notch antenna, and tested to show the validity of the proposed circuit model.

  • PDF

Design of ESD Protection Circuit with improved Snapback characteristics Using Stack Structure (스텍 구조를 이용한 향상된 스냅백 특성을 갖는 ESD 보호회로 설계)

  • Song, Bo-Bae;Lee, Jea-Hack;Kim, Byung-Soo;Kim, Dong-Sun;Hwang, Tae-Ho
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.280-284
    • /
    • 2021
  • In this paper, a new ESD protection circuit is proposed to improve the snapback characteristics. The proposed a new structure ESD protection circuit applying the conventional SCR structural change and stack structure. The electrical characteristics of the structure using penta-well and double trigger were analyzed, and the trigger voltage and holding voltage were improved by applying the stack structure. The electron current and total current flow were analyzed through the TCAD simulation. The characteristics of the latch-up immunity and excellent snapback characteristics were confirmed. The electrical characteristics of the proposed ESD protection circuit were analyzed through HBM modeling after forming a structure through TCAD simulator.

Performance-Based EMC Design Using a Maximum Radiated Emissions Calculator

  • Hubing, Todd H.
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.4
    • /
    • pp.199-207
    • /
    • 2013
  • Meeting electromagnetic compatibility (EMC) requirements can be a significant challenge for engineers designing today's electronic devices. Traditional approaches rely heavily on EMC design rules. Unfortunately, these design rules aren't based on the specific EMC requirements for a particular device, and they don't usually take into account the specific function of the circuits or the many design details that will ultimately determine whether the device is compliant. This paper describes a design methodology that relates design decisions to the product's EMC requirements. The goal of performance-based EMC design is to ensure that electronic designs meet EMC requirements the first time the product is tested. More work needs to be done before this concept reaches its full potential, but electronic system designers can already derive significant benefit by applying this approach to products currently under development.

Modeling and Analysis of Power Piezoelectric Transformer and Its Application to Fluorescent Lamp Ballasts (압전 변압기의 모델링과 형광등 안정기회로에의 응용)

  • Choe, Seong-Jin;Lee, Gyu-Chan;Jo, Bo-Hyeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.7
    • /
    • pp.376-383
    • /
    • 1999
  • The piezoelectric transformer (PT) is an electro-mechanical device that transfers electrical energy through a mechanical vibration. In this paper, a PT operating in the contour vibration mode is introduced for an application of fluorescent lamp ballast. Utilizing its inherent characteristics of the LC resonator and a high voltage gain to ignite the lamp in light load condition, an investigation of a power piezoelectric transformer as a potential component for a fluorescent lamp ballast is discussed. PT is easy to be produced in mass and reduces the cost of the ballast. The modified equivalent circuit model of the PT considering the operating current level is derived to design the fluorescent lamp ballast. This model describes the voltage gain of the PT in wide load variations and various input current levels. The experimental and simulation results are provided to verify theoretical analysis. The power capacity of the currently developed PT is relatively low (15W), but it can be increased by adopting a multi-layer structure and is currently under investigation. It is also possible to parallel the PT for higher power processing.

  • PDF

Experimental study on hot-wire type air flow rate measurement system considering ambient temperature compensations (온도보상을 고려한 열선형 공기유량 측정시스템에 관한 실험적 연구)

  • 이민형;유정열;김사랑;고상근;윤준원;김동성
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.62-75
    • /
    • 1991
  • The purpose of this study is to perform modelings and experiments to measure air flow rate using hot-wires and a CTA(Constant Temperature Anemometer). The flow rate can be obtained by measuring the heat loss of the hot-wire due to the variations of flow velocity when the hot-wire is maintained at uniform temperature. But the defect of this method is that the output signal changes not only by the flow rate but also by the ambient temperature. Thus, in the present study, a method which compensates the variations of the ambient temperature has been introduced to measure exact flow rate. To be more specific, the bridge circuit of the usual hot-wire anemometer system has been modified in such a way that a temperature resistance sensor and a variable resistance are placed in one of the legs to compensate the different temperature coefficients of both the hot-wire and the temperature compensating resistance for flow velocity or for flow mass up to the flow temperature of 50 .deg.C. Comparing the modeling and experimental results, it has been shown that the compensating point differs as the flow rate varies. Therefore, optimum compensation points are sought to construct the circuit. The present modeling and experimental results may be applied to the design of actual air flow meters for automobiles.

  • PDF