• Title/Summary/Keyword: Circadian system

Search Result 78, Processing Time 0.026 seconds

Anatomy and Physiology in Human Circadian Rhythms (인체 일주기리듬의 해부학 및 생리학)

  • Sohn, Chang-Ho
    • Sleep Medicine and Psychophysiology
    • /
    • v.5 no.1
    • /
    • pp.1-11
    • /
    • 1998
  • Chronobiology is the area of medicine that is, how time-related event shape our daily biologic responses and apply to any aspect of medicine with regard to altering pathophysiology and treatment response. In mammals, there are several evidences that prove suprachiasmatic nuclei(SCN) is the major circadian pacemaker and the circadian rhythm influences so many biological aspects of an living organism such as rest-activity, thermoregulation, reproduction, and endocrine system. In case of human beings, there had been little information of circadian system. That may be due to the experimental, technical difficulties to study but also to the fact that human has the more complex environments that may alter the circadina rhythm like the artificial light, many socio-cultural aspects and so forth. However, several reports of these days indicate human's circadian system is composed of two or more circadian oscillators and SCN is the major circadian oscillator among them like the other mammals. Free-running circadinan period of mankind is about 24 hours rather than about 25 hours, and rest-activity rhythm is polymodal like other species. In addition to that, human may have capcities to change the circadian rhythm as the seasonal changes of daynight schedule. In this article, the author will summarize recent progress of anatomy and physiology of the circadian clock mechanism in humans.

  • PDF

Implications of Circadian Rhythm in Dopamine and Mood Regulation

  • Kim, Jeongah;Jang, Sangwon;Choe, Han Kyoung;Chung, Sooyoung;Son, Gi Hoon;Kim, Kyungjin
    • Molecules and Cells
    • /
    • v.40 no.7
    • /
    • pp.450-456
    • /
    • 2017
  • Mammalian physiology and behavior are regulated by an internal time-keeping system, referred to as circadian rhythm. The circadian timing system has a hierarchical organization composed of the master clock in the suprachiasmatic nucleus (SCN) and local clocks in extra-SCN brain regions and peripheral organs. The circadian clock molecular mechanism involves a network of transcription-translation feedback loops. In addition to the clinical association between circadian rhythm disruption and mood disorders, recent studies have suggested a molecular link between mood regulation and circadian rhythm. Specifically, genetic deletion of the circadian nuclear receptor Rev-$erb{\alpha}$ induces mania-like behavior caused by increased midbrain dopaminergic (DAergic) tone at dusk. The association between circadian rhythm and emotion-related behaviors can be applied to pathological conditions, including neurodegenerative diseases. In Parkinson's disease (PD), DAergic neurons in the substantia nigra pars compacta progressively degenerate leading to motor dysfunction. Patients with PD also exhibit non-motor symptoms, including sleep disorder and neuropsychiatric disorders. Thus, it is important to understand the mechanisms that link the molecular circadian clock and brain machinery in the regulation of emotional behaviors and related midbrain DAergic neuronal circuits in healthy and pathological states. This review summarizes the current literature regarding the association between circadian rhythm and mood regulation from a chronobiological perspective, and may provide insight into therapeutic approaches to target psychiatric symptoms in neurodegenerative diseases involving circadian rhythm dysfunction.

Pigment-dispersing factor induces phase shifts of circadian locomotor rhythm in the cricket Gryllus bimaculatus

  • Singaravel, Muniyandi;Tomioka, Kenji
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.243-245
    • /
    • 2002
  • Pigment-dispersing factor (PDF) is an octadecapeptide distributed in the optic lobe and the brain in a variety of insect species. There are lines of evidence suggesting possible involvement of PDF in the insect circadian system. However, its physiological roles in the circadian time keeping mechanism have not been clearly defined. In this study, we have examined the phase shifting effects of Gryllus-PDF on the circadian locomotor rhythm in the cricket Gryllus bimaculatus of which circadian clock is located in the optic lobe. Phase shifts in the circadian activity rhythm were measured following microinjection of 22nl of vehicle (Ringer's solution) or O.lmM PDF into the optic lobe through the compound eye at various circadian times. The results showed that PDF induced phase shifts of the circadian clock in a phase-dependent manner, suggesting that it may play a role as an input signal for the circadian clock.

  • PDF

Circadian Expression of Clock Genes in the Rat Eye and Brain

  • Park, Kyungbae;Kang, Hae Mook
    • Molecules and Cells
    • /
    • v.22 no.3
    • /
    • pp.285-290
    • /
    • 2006
  • The light sensing system in the eye directly affects the circadian oscillator in the mammalian suprachiasmatic nucleus (SCN). To investigate this relationship in the rat, we examined the circadian expression of clock genes in the SCN and eye tissue during a 24 h day/night cycle. In the SCN, rPer1 and rPer2 mRNAs were expressed in a clear circadian rhythm like rCry1 and rCry2 mRNAs, whereas the level of BMAL1 and CLOCK mRNAs decreased during the day and increased during the night with a relatively low amplitude. It seems that the clock genes of the SCN may function in response to a master clock oscillation in the rat. In the eye, the rCry1 and rCry2 were expressed in a circadian rhythm with an increase during subjective day and a decrease during subjective night. However, the expression of Opn4 mRNA did not exhibit a clear circadian pattern, although its expression was higher in daytime than at night. This suggests that cryptochromes located in the eye, rather than melanopsin, are the major photoreceptive system for synchronizing the circadian rhythm of the SCN in the rat.

A Time to Fast, a Time to Feast: The Crosstalk between Metabolism and the Circadian Clock

  • Kovac, Judit;Husse, Jana;Oster, Henrik
    • Molecules and Cells
    • /
    • v.28 no.2
    • /
    • pp.75-80
    • /
    • 2009
  • The cyclic environmental conditions brought about by the 24 h rotation of the earth have allowed the evolution of endogenous circadian clocks that control the temporal alignment of behaviour and physiology, including the uptake and processing of nutrients. Both metabolic and circadian regulatory systems are built upon a complex feedback network connecting centres of the central nervous system and different peripheral tissues. Emerging evidence suggests that circadian clock function is closely linked to metabolic homeostasis and that rhythm disruption can contribute to the development of metabolic disease. At the same time, metabolic processes feed back into the circadian clock, affecting clock gene expression and timing of behaviour. In this review, we summarize the experimental evidence for this bimodal interaction, with a focus on the molecular mechanisms mediating this exchange, and outline the implications for clock-based and metabolic diseases.

Neurobiological Functions of the Period Circadian Clock 2 Gene, Per2

  • Kim, Mikyung;Pena, June Bryan de la;Cheong, Jae Hoon;Kim, Hee Jin
    • Biomolecules & Therapeutics
    • /
    • v.26 no.4
    • /
    • pp.358-367
    • /
    • 2018
  • Most organisms have adapted to a circadian rhythm that follows a roughly 24-hour cycle, which is modulated by both internal (clock-related genes) and external (environment) factors. In such organisms, the central nervous system (CNS) is influenced by the circadian rhythm of individual cells. Furthermore, the period circadian clock 2 (Per2) gene is an important component of the circadian clock, which modulates the circadian rhythm. Per2 is mainly expressed in the suprachiasmatic nucleus (SCN) of the hypothalamus as well as other brain areas, including the midbrain and forebrain. This indicates that Per2 may affect various neurobiological activities such as sleeping, depression, and addiction. In this review, we focus on the neurobiological functions of Per2, which could help to better understand its roles in the CNS.

Is the Circadian Rhythm Dysregulation a Core Pathogenetic Mechanism of Bipolar Disorder? (일주기리듬의 조절이상이 양극성장애의 핵심 발병 기전일까?)

  • Lee, Heon-Jeong
    • Journal of Korean Neuropsychiatric Association
    • /
    • v.57 no.4
    • /
    • pp.276-286
    • /
    • 2018
  • Circadian rhythm is a periodic and continuous change in physiological, behavioral, and mental characteristics that occurs in most organisms on the Earth, because the Earth rotates in a 24-hour cycle. The circadian system regulates daily rhythms of physiology and behavior, such as the sleep/wake cycle, body temperature, hormonal secretion, and mood. The influence of circadian rhythm is very powerful, but limited research has addressed its effects. However, many recent studies have shown that circadian dysregulation may play an important role in the pathogenesis of bipolar disorder. This review study examined current and noteworthy studies, including the authors' own works, and proposes a possible clinical application of bipolar disorder based on evidence that circadian rhythm dysregulation in bipolar disorder may be a key pathogenetic mechanism.

The Regulation of the Testicular Rhythm Coordinated with Circadian Clock Genes

  • Chung, M. K.;Park, Y. J.;K. H. Jung;J. J. Lim;Lee, D. R.;S. J. Yoon;Park, C. E.;T. K. Yoon;Y. G. Chai
    • Proceedings of the KSAR Conference
    • /
    • 2004.06a
    • /
    • pp.261-261
    • /
    • 2004
  • Circadian rhythms, which measure time about 24 hours, are generated by one of the most ubiquitous and well investigated timing system. More recently, circadian clock gene expression has been reported in various peripheral tissues. If a circadian clock is functioning in the testis, expression of clock genes should be observed in this tissue. To resolve this issue, we examined the expression of circadian clock genes in the testis. (omitted)

  • PDF

The end effector of circadian heart rate variation: the sinoatrial node pacemaker cell

  • Yaniv, Yael;Lakatta, Edward G.
    • BMB Reports
    • /
    • v.48 no.12
    • /
    • pp.677-684
    • /
    • 2015
  • Cardiovascular function is regulated by the rhythmicity of circadian, infradian and ultradian clocks. Specific time scales of different cell types drive their functions: circadian gene regulation at hours scale, activation-inactivation cycles of ion channels at millisecond scales, the heart's beating rate at hundreds of millisecond scales, and low frequency autonomic signaling at cycles of tens of seconds. Heart rate and rhythm are modulated by a hierarchical clock system: autonomic signaling from the brain releases neurotransmitters from the vagus and sympathetic nerves to the heart's pacemaker cells and activate receptors on the cell. These receptors activating ultradian clock functions embedded within pacemaker cells include sarcoplasmic reticulum rhythmic spontaneous Ca2+ cycling, rhythmic ion channel current activation and inactivation, and rhythmic oscillatory mitochondria ATP production. Here we summarize the evidence that intrinsic pacemaker cell mechanisms are the end effector of the hierarchical brain-heart circadian clock system.

Fatigue of Night Shift Nurses Seen in Circadian Types at Intensive Care units (중환자실 간호사의 Circadian 유형에 따른 밤근무 피로도 조사)

  • YANG, Ji-Sun
    • Korean Journal of Occupational Health Nursing
    • /
    • v.9 no.2
    • /
    • pp.86-93
    • /
    • 2000
  • This study was conducted to find out the degree of tiredness, accumulated tendencies of fatigues in accordance with 3 types of circadian rhythms and 3 types of perceived fatigue signs such as physical, psychological and neurosensory aspects in before and after work at night. Samples were chosen from the 217 intensive care units nurses working in 13 general hospitals which had 3 shift rotating systems, Data were collected from November to December in 1999. Two hundreds seventeen respondents were classified by 3 circadian types such as 59 morning, 110 middle and 48 evening. Circadian type was measured by the circadian type scale which was designed by ${\ddot{O}}stberg$ and Home (1976). in order to estimate the level of tiredness, the investigator used the fatigue checklist designed by the Labor and Health Institute of Japan(1970). Analysis was done by frequency a percentages, ${\chi}^2$ test and repeated measures ANOVA test. The result of this study were as follow: 1. In the general characteristics of the subjects circadian types, moderate type had the large proportion at 50.7% and morning type had 27.2% and evening type had 22.1%. 2. According to the 3 types of fatigue signs, the highest general tendency was 'General weakness' and 'Feeling of headsore' for physically perceived sign, 'Drowsiness' for psychological sign, and 'Uncomfortableness in sight seeing' for neurosensory sign. 3. The most frequently complained fatigue were observed in physical symptoms among physical, mental, and neurosensual symptoms. The percentage of complained was higher after night work than before the work started. 4. There was not any statistical significant difference between the circadian type and the degree of physical, mental, neurosensory fatigue. 5. There was not any statistical significant difference in regarding to each date of night shift except difference between 1st and 2nd days of fatigue perceived physically. Therefore, the study concluded that the fatigue perceived by night shift nurses might be related with shift working condition rather than circadian types.

  • PDF