Circadian Expression of Clock Genes in the Rat Eye and Brain

  • Park, Kyungbae (Department of Genetic Engineering, Cheongju University) ;
  • Kang, Hae Mook (Department of Genetic Engineering, Cheongju University)
  • Received : 2006.07.06
  • Accepted : 2006.09.26
  • Published : 2006.12.31

Abstract

The light sensing system in the eye directly affects the circadian oscillator in the mammalian suprachiasmatic nucleus (SCN). To investigate this relationship in the rat, we examined the circadian expression of clock genes in the SCN and eye tissue during a 24 h day/night cycle. In the SCN, rPer1 and rPer2 mRNAs were expressed in a clear circadian rhythm like rCry1 and rCry2 mRNAs, whereas the level of BMAL1 and CLOCK mRNAs decreased during the day and increased during the night with a relatively low amplitude. It seems that the clock genes of the SCN may function in response to a master clock oscillation in the rat. In the eye, the rCry1 and rCry2 were expressed in a circadian rhythm with an increase during subjective day and a decrease during subjective night. However, the expression of Opn4 mRNA did not exhibit a clear circadian pattern, although its expression was higher in daytime than at night. This suggests that cryptochromes located in the eye, rather than melanopsin, are the major photoreceptive system for synchronizing the circadian rhythm of the SCN in the rat.

Keywords

References

  1. Aton, S. J. and Herzhog, E. D. (2005) Come together, right… now: Synchronization of rhythms in a mammalian circadian clock. Neuron 48, 531−534 https://doi.org/10.1016/j.neuron.2005.11.001
  2. Berson, D. A., Dunn, F. A., and Takao, M. (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295, 1070−1073
  3. Dunlap, J. C. (1999) Molecular bases for circadian clocks. Cell 96, 271−290
  4. Foster, R. G. (1998) Shedding light on the biological clock. Neuron 20, 829−832
  5. Gekakis, N., Staknis, D., Nguyen, H. B., Davis, F. C., Wilsbacher, L. D., et al. (1998) Role of the CLOCK protein in the mammalian circadian mechanism. Science 280, 1564−1569
  6. Hattar, S., Liao, H. W., Takao, M., Berson, D. M., and Yau, K. W. (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295, 1065−1070 https://doi.org/10.1126/science.1069609
  7. Hogenesch, J. B., Gu, Y. Z., Jain, S., and Bradfield, C. A. (1998) The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc. Natl. Acad. Sci. USA 12, 5474−5479
  8. Honma, S., Ikeda, M., Abe, H., Tanahashi, Y., Namihira, M., et al. (1998) Circadian oscillation of BMAL1, a partner of a mammalian clock gene Clock, in rat suprachiasmatic nucleus. Biochem. Biophys. Res. Commun. 250, 83−87
  9. Jin, X., Shearman, L. P., Weaver, D. R., Zylka, M. J., de Vries, G. J., et al. (1999) A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell 96, 57−68
  10. King, D. P., Zhao, Y., Sangoram, A. M., Wilsbacher, L. D., Tanaka, M., et al. (1997) Positional cloning of the mouse circadian Clock gene. Cell 89, 641−653
  11. Kume, K., Zylka, M. J., Sriram, S., Shearman, L. P., Weaver, D. R., et al. (1999) mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98, 193−205
  12. Lucas, R. J., Freeman, M. S., Munoz, M., Garcia-Fernandez, J. M., and Foster, R. G. (1999) Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. Science 284, 505−507 https://doi.org/10.1126/science.284.5413.505
  13. Okamura, H., Miyake, S., Sumi, Y., Yamaguchi, S., Yasui, A., et al. (1999) Photic induction of mPer1 and mPer2 in crydeficient mice lacking a biological clock. Science 286, 2531−2534
  14. Panda, S., Sato, T. K., Castrucci, A. M., Rollag, M. D., DeGrip, W. J., Hogenesch, J. B., et al. (2002) Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science 298, 2213−2216 https://doi.org/10.1126/science.1076848
  15. Panda, S., Provencio, I., Tu, D. C., Pires, S. S., Rollag, M. D., et al. (2003) Melanopsin is required for non-image-forming photic responses in blind mice. Science 301, 525−527 https://doi.org/10.1126/science.1086179
  16. Park, K. and Kang, H. M. (2004) Cloning and circadian expression of rat Cry1. Mol. Cells 18, 256−260
  17. Preitner, N., Damiola, F., Lopez-Molina, L., Zakany, J., Duboule, D., et al. (2002) The orphan nuclear receptor REVERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110, 251−260 https://doi.org/10.1016/S0092-8674(02)00825-5
  18. Rubby, N. F., Brennan, T. J., Cao, V., Franken, P., Heller, H. C., et al. (2002) Role of melanopsin in circadian responses to light. Science 298, 2211−2213
  19. Sancar, A. (2000) Cryptochrome: The second photoactive pigment in the eye and its role in circadian photoreception. Ann. Rev. Biochem. 69, 31−67
  20. Sancar, A. (2004) Regulation of the mammalian circadian clock by cryptochrome. J. Biol. Chem. 279, 34079−34082 https://doi.org/10.1074/jbc.R400016200
  21. Sun, Z. S., Albrecht, U., Zhuchenko, O., Bailey, J., Eichele, G., et al. (1997) RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell 90, 1003−1011
  22. Takahashi, J. S. (1995) Molecular neurobiology and genetics of circadian rhythms in mammals. Annu. Rev. Neurosci. 18, 531−553
  23. Takahata, S., Sogawa, K., Kobayashi, A., Ema, M., Mimura, J., et al. (1998) Transcriptionally active heterodimer formation of an Arnt-like PAS protein, Arnt3, with HIF-1a, HLF, and clock. Biochem. Biophys. Res. Commun. 248, 789−794 https://doi.org/10.1006/bbrc.1998.9012
  24. Tei, H., Okamura, H., Shigeyoshi, Y., Fukuhara, C., Ozawa, R., et al. (1997) Circadian oscillation of a mammalian homologue of the Drosophila period gene. Nature 389, 512−516
  25. Thresher, R. J., Vitaterna, M. H., Miyamoto, Y., Kazantsev, A., Hsu, D. S., et al. (1998) Role of mouse cryptochrome bluelight photoreceptor in circadian photoresponses. Science 282, 1490−1494
  26. van Gelder, R. N., Gibler, T. M., Tu, D., Embry, K., Selby, C. P., et al. (2002) Pleiotropic effects of cryptochromes 1 and 2 on free-running and light-entrained murine circadian rhythms. J. Neurogenet. 16, 181−203 https://doi.org/10.1080/01677060215306
  27. van Gelder, R. N., Wee, R., Lee, J. A., and Tu, D. C. (2003) Reduced pupillary light responses in mice lacking cryptochromes. Science 299, 222 https://doi.org/10.1126/science.1079536
  28. Vitaterna, M. H., Selby, C. P., Todo, T., Niwa, H., Thompson, C., et al. (1999) Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2. Proc. Natl. Acad. Sci. USA 96, 12114−12119
  29. Yan, L., Takekida, S., Shigeyoshi, Y., and Okamura, H. (1999) Per1 and Per2 gene expression th the rat suprachiasmaticnucleus: circadian profile and the compartment-specific response to light. Neuroscience 94, 141−150 https://doi.org/10.1016/S0306-4522(99)00223-7
  30. Zheng, B., Albrecht, U., Kaasik, K., Sage, M., Lu, W., et al. (2001) Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell 105, 683−694