• Title/Summary/Keyword: Ciphertext

Search Result 152, Processing Time 0.018 seconds

Ciphertext policy attribute-based encryption supporting unbounded attribute space from R-LWE

  • Chen, Zehong;Zhang, Peng;Zhang, Fangguo;Huang, Jiwu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.2292-2309
    • /
    • 2017
  • Ciphertext policy attribute-based encryption (CP-ABE) is a useful cryptographic technology for guaranteeing data confidentiality but also fine-grained access control. Typically, CP-ABE can be divided into two classes: small universe with polynomial attribute space and large universe with unbounded attribute space. Since the learning with errors over rings (R-LWE) assumption has characteristics of simple algebraic structure and simple calculations, based on R-LWE, we propose a small universe CP-ABE scheme to improve the efficiency of the scheme proposed by Zhang et al. (AsiaCCS 2012). On this basis, to achieve unbounded attribute space and improve the expression of attribute, we propose a large universe CP-ABE scheme with the help of a full-rank differences function. In this scheme, all polynomials in the R-LWE can be used as values of an attribute, and these values do not need to be enumerated at the setup phase. Different trapdoors are used to generate secret keys in the key generation and the security proof. Both proposed schemes are selectively secure in the standard model under R-LWE. Comparison with other schemes demonstrates that our schemes are simpler and more efficient. R-LWE can obtain greater efficiency, and unbounded attribute space means more flexibility, so our research is suitable in practices.

Iris Ciphertext Authentication System Based on Fully Homomorphic Encryption

  • Song, Xinxia;Chen, Zhigang;Sun, Dechao
    • Journal of Information Processing Systems
    • /
    • v.16 no.3
    • /
    • pp.599-611
    • /
    • 2020
  • With the application and promotion of biometric technology, biometrics has become more and more important to identity authentication. In order to ensure the privacy of the user, the biometrics cannot be stored or manipulated in plaintext. Aiming at this problem, this paper analyzes and summarizes the scheme and performance of the existing biometric authentication system, and proposes an iris-based ciphertext authentication system based on fully homomorphic encryption using the FV scheme. The implementation of the system is partly powered by Microsoft's SEAL (Simple Encrypted Arithmetic Library). The entire system can complete iris authentication without decrypting the iris feature template, and the database stores the homomorphic ciphertext of the iris feature template. Thus, there is no need to worry about the leakage of the iris feature template. At the same time, the system does not require a trusted center for authentication, and the authentication is completed on the server side directly using the one-time MAC authentication method. Tests have shown that when the system adopts an iris algorithm with a low depth of calculation circuit such as the Hamming distance comparison algorithm, it has good performance, which basically meets the requirements of real application scenarios.

Concealed Policy and Ciphertext Cryptography of Attributes with Keyword Searching for Searching and Filtering Encrypted Cloud Email

  • Alhumaidi, Hind;Alsuwat, Hatim
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.212-222
    • /
    • 2022
  • There has been a rapid increase in the use of cloud email services. As a result, email encryption has become more commonplace as concerns about cloud privacy and security grow. Nevertheless, this increase in usage is creating the challenge of how to effectively be searching and filtering the encrypted emails. They are popular technologies of solving the issue of the encrypted emails searching through searchable public key encryption. However, the problem of encrypted email filtering remains to be solved. As a new approach to finding and filtering encrypted emails in the cloud, we propose a ciphertext-based encrypted policy attribute-based encryption scheme and keyword search procedure based on hidden policy ciphertext. This feature allows the user of searching using some encrypted emails keywords in the cloud as well as allowing the emails filter-based server toward filter the content of the encrypted emails, similar to the traditional email keyword filtering service. By utilizing composite order bilinear groups, a hidden policy system has been successfully demonstrated to be secure by our dual system encryption process. Proposed system can be used with other scenarios such as searching and filtering files as an applicable method.

Direct Chosen Ciphertext Secure Hierarchical ID-Based Encryption Schemes in the Selective-ID Security Model

  • Park, Jong-Hwan;Choi, Kyu-Young;Lee, Dong-Hoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2007.02a
    • /
    • pp.154-157
    • /
    • 2007
  • It has been widely believed that one can obtain $\iota$-Hierarchical Identity Based Encryption (HIBE) scheme secure against chosen ciphetext attacks from ($\iota$+1)-HIBE scheme secure against chosen plaintext attacks. In this paper, however, we show that when applying two concrete HIBE schemes that Boneh et al. [1, 2] proposed, chosen ciphertext secure $\iota$-HIBE schemes are directly derived from chosen plaintext secure $\iota$-HIBE schemes. Our constructions are based on a one-time signature-based transformation that Canetti et at.[3] proposed. The security of our schemes is proved in the selective-ID suity model without using random oracles.

  • PDF

Efficient Certificate-Based Proxy Re-encryption Scheme for Data Sharing in Public Clouds

  • Lu, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2703-2718
    • /
    • 2015
  • Nowadays, public cloud storage is gaining popularity and a growing number of users are beginning to use the public cloud storage for online data storing and sharing. However, how the encrypted data stored in public clouds can be effectively shared becomes a new challenge. Proxy re-encryption is a public-key primitive that can delegate the decryption right from one user to another. In a proxy re-encryption system, a semi-trusted proxy authorized by a data owner is allowed to transform an encrypted data under the data owner's public key into a re-encrypted data under an authorized recipient's public key without seeing the underlying plaintext. Hence, the paradigm of proxy re-encryption provides a promising solution to effectively share encrypted data. In this paper, we propose a new certificate-based proxy re-encryption scheme for encrypted data sharing in public clouds. In the random oracle model, we formally prove that the proposed scheme achieves chosen-ciphertext security. The simulation results show that it is more efficient than the previous certificate-based proxy re-encryption schemes.

ON MULTI-AUTHORITY CIPHERTEXT-POLICY ATTRIBUTE-BASED ENCRYPTION

  • Muller, Sascha;Katzenbeisser, Stefan;Eckert, Claudia
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.4
    • /
    • pp.803-819
    • /
    • 2009
  • In classical encryption schemes, data is encrypted under a single key that is associated with a user or group. In Ciphertext-Policy Attribute-Based Encryption(CP-ABE) keys are associated with attributes of users, given to them by a central trusted authority, and data is encrypted under a logical formula over these attributes. We extend this idea to the case where an arbitrary number of independent parties can be present to maintain attributes and their corresponding secret keys. We present a scheme for multi-authority CP-ABE, propose the first two constructions that fully implement the scheme, and prove their security against chosen plaintext attacks.

Attribute-based Proxy Re-encryption with a Constant Number of Pairing Operations

  • Seo, Hwa-Jeong;Kim, Ho-Won
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.1
    • /
    • pp.53-60
    • /
    • 2012
  • Attribute-based encryption (ABE) is an encryption scheme in which the user is able to decrypt a ciphertext with associated attributes. However, the scheme does not offer the capability of decryption to others when the user is offline. For this reason, the attribute-based proxy re-encryption (ABPRE) scheme was proposed, which combines traditional proxy re-encryption with ABE, so a user is able to empower designated users to decrypt the re-encrypted ciphertext with the associated attributes of designated users. However, previous ABPRE schemes demands a number of pairing operations that imply huge computational overhead. To reduce the number of pairing operations, we reduce the pairing operations with exponent operations. This paper provides a novel approach to an ABPRE scheme with constant pairing operation latency.

Fully Homomorphic Encryption Based On the Parallel Computing

  • Tan, Delin;Wang, Huajun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.497-522
    • /
    • 2018
  • Fully homomorphic encryption(FHE) scheme may be the best method to solve the privacy leakage problem in the untrusted servers because of its ciphertext calculability. However, the existing FHE schemes are still not being put into the practical applications due to their low efficiency. Therefore, it is imperative to find a more efficient FHE scheme or to optimize the existing FHE schemes so that they can be put into the practical applications. In this paper, we optimize GSW scheme by using the parallel computing, and finally we get a high-performance FHE scheme, namely PGSW scheme. Experimental results show that the time overhead of the homomorphic operations in new FHE scheme will be reduced manyfold with the increasing of processing units number. Therefore, our scheme can greatly reduce the running time of homomorphic operations and improve the performance of FHE scheme through sacrificing hardware resources. It can be seen that our FHE scheme can catalyze the development of FHE.

Authentication Template Protection Using Function Encryption (함수암호를 이용한 인증정보 Template 보호 기술)

  • Park, Dong Hee;Park, Young-Ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.6
    • /
    • pp.1319-1326
    • /
    • 2019
  • Recently, biometrics and location information are being used for authentication in many devices. However, these information are stored as plaintext in safe device or, stored as ciphertext in authentication server it is used for authentication in plaintext by decrypting. Therefore, the leakage of authentication information as well as hacking can cause fatal privacy problems. In this paper, we propose a technique that can be authenticated without exposing authentication information to ciphertext using function encryption.

A Strong Designated Verifiable DL Based Signcryption Scheme

  • Mohanty, Sujata;Majhi, Banshidhar
    • Journal of Information Processing Systems
    • /
    • v.8 no.4
    • /
    • pp.567-574
    • /
    • 2012
  • This paper presents a strong designated verifiable signcryption scheme, in which a message is signcrypted by a signcryptor and only a specific receiver, who called a "designated verifier", verifies it using his own secret key. The scheme is secure, as an adversary can not verify the signature even if the secret key of the signer is compromised or leaked. The security of the proposed scheme lies in the complexity of solving two computationally hard problems, namely, the Discrete Logarithm Problem (DLP) and the Integer Factorization Problem (IFP). The security analysis of the scheme has been done and it is proved that, the proposed scheme can withstand an adaptive chosen ciphertext attack. This scheme can be very useful in organizations where there is a need to send confidential documents to a specific recipient. This scheme can also be applicable to real life scenarios, such as, e-commerce applications, e-banking and e-voting.