• Title/Summary/Keyword: Cine magnetic resonance imaging

Search Result 35, Processing Time 0.029 seconds

Retrospective Electrocardiography-Gated Real-Time Cardiac Cine MRI at 3T: Comparison with Conventional Segmented Cine MRI

  • Chen Cui;Gang Yin;Minjie Lu;Xiuyu Chen;Sainan Cheng;Lu Li;Weipeng Yan;Yanyan Song;Sanjay Prasad;Yan Zhang;Shihua Zhao
    • Korean Journal of Radiology
    • /
    • v.20 no.1
    • /
    • pp.114-125
    • /
    • 2019
  • Objective: Segmented cardiac cine magnetic resonance imaging (MRI) is the gold standard for cardiac ventricular volumetric assessment. In patients with difficulty in breath-holding or arrhythmia, this technique may generate images with inadequate quality for diagnosis. Real-time cardiac cine MRI has been developed to address this limitation. We aimed to assess the performance of retrospective electrocardiography-gated real-time cine MRI at 3T for left ventricular (LV) volume and mass measurement. Materials and Methods: Fifty-one patients were consecutively enrolled. A series of short-axis cine images covering the entire left ventricle using both segmented and real-time balanced steady-state free precession cardiac cine MRI were obtained. End-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), ejection fraction (EF), and LV mass were measured. The agreement and correlation of the parameters were assessed. Additionally, image quality was evaluated using European CMR Registry (Euro-CMR) score and structure visibility rating. Results: In patients without difficulty in breath-holding or arrhythmia, no significant difference was found in Euro-CMR score between the two techniques (0.3 ± 0.7 vs. 0.3 ± 0.5, p > 0.05). Good agreements and correlations were found between the techniques for measuring EDV, ESV, EF, SV, and LV mass. In patients with difficulty in breath-holding or arrhythmia, segmented cine MRI had a significant higher Euro-CMR score (2.3 ± 1.2 vs. 0.4 ± 0.5, p < 0.001). Conclusion: Real-time cine MRI at 3T allowed the assessment of LV volume with high accuracy and showed a significantly better image quality compared to that of segmented cine MRI in patients with difficulty in breath-holding and arrhythmia.

Assessment of Left Ventricular Function with Single Breath-Hold Magnetic Resonance Cine Imaging in Patients with Arrhythmia

  • Bak, So Hyeon;Kim, Sung Mok;Park, Sung-Ji;Kim, Min-Ji;Choe, Yeon Hyeon
    • Investigative Magnetic Resonance Imaging
    • /
    • v.21 no.1
    • /
    • pp.20-27
    • /
    • 2017
  • Purpose: To evaluate quantification results of single breath-hold (SBH) magnetic resonance (MR) cine imaging compared to results of conventional multiple breath-hold (MBH) technique for left ventricular (LV) function in patients with cardiac arrhythmia. Materials and Methods: MR images of patients with arrhythmia who underwent MBH and SBH cine imaging at the same time on a 1.5T MR scanner were retrospectively reviewed. Both SBH and MBH cine imaging were performed with balanced steady state free precession. SBH scans were acquired using temporal parallel acquisition technique (TPAT). Fifty patients ($65.4{\pm}12.3years$, 72% men) were included. End-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), ejection fraction (EF), myocardial mass, and LV regional wall motion were evaluated. Results: EF, myocardial mass, and regional wall motion were not significantly different between SBH and MBH acquisition techniques (all P-values > 0.05). EDV, ESV, and SV were significant difference between the two techniques. These parameters for SBH cine imaging with TPAT tended to lower than those in MBH. EF and myocardial mass of SBH cine imaging with TPAT showed good correlation with values of MBH cine imaging in Passing-Bablok regression charts and Bland-Altman plots. However, SBH imaging required significantly shorter acquisition time than MBH cine imaging ($15{\pm}7sec$ vs. $293{\pm}104sec$, P < 0.001). Conclusion: SBH cine imaging with TPAT permits shorter acquisition time with assessment results of global and regional LV function comparable to those with MBH cine imaging in patients with arrhythmia.

Contrast-Enhanced Cine Magnetic Resonance Imaging in Myocardial Infarction

  • 최병욱;최규옥;김영진;정남식;최동훈
    • Proceedings of the KSMRM Conference
    • /
    • 2003.10a
    • /
    • pp.43-43
    • /
    • 2003
  • Viable myocardium can be distinguished from the infarcted myocardium by contrast-enhanced magnetic resonance imaging (ceMRI). In this study, contrast-enhancement with cine magnetic resonance imaging (cecineMRI) was performed for direct correlation of transmural extent of hyperenhancement and that of contractility.

  • PDF

Contrast-Enhanced Cine Magnetic Resonance Imaging in Myocardial Infarction

  • 최병욱;최규옥;김영진;정남식;최동훈
    • Proceedings of the KSMRM Conference
    • /
    • 2003.10a
    • /
    • pp.89-90
    • /
    • 2003
  • Viable myocardium can be distinguished from the infarcted myocardium by contrast-enhanced magnetic resonance imaging (ceMRI). In this study, contrast-enhancement with cine magnetic resonance imaging (cecineMRI) was performed for direct correlation of transmural extent of hyperenhancement and that of contractility.

  • PDF

Biases in the Assessment of Left Ventricular Function by Compressed Sensing Cardiovascular Cine MRI

  • Yoon, Jong-Hyun;Kim, Pan-ki;Yang, Young-Joong;Park, Jinho;Choi, Byoung Wook;Ahn, Chang-Beom
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.2
    • /
    • pp.114-124
    • /
    • 2019
  • Purpose: We investigate biases in the assessments of left ventricular function (LVF), by compressed sensing (CS)-cine magnetic resonance imaging (MRI). Materials and Methods: Cardiovascular cine images with short axis view, were obtained for 8 volunteers without CS. LVFs were assessed with subsampled data, with compression factors (CF) of 2, 3, 4, and 8. A semi-automatic segmentation program was used, for the assessment. The assessments by 3 CS methods (ITSC, FOCUSS, and view sharing (VS)), were compared to those without CS. Bland-Altman analysis and paired t-test were used, for comparison. In addition, real-time CS-cine imaging was also performed, with CF of 2, 3, 4, and 8 for the same volunteers. Assessments of LVF were similarly made, for CS data. A fixed compensation technique is suggested, to reduce the bias. Results: The assessment of LVF by CS-cine, includes bias and random noise. Bias appeared much larger than random noise. Median of end-diastolic volume (EDV) with CS-cine (ITSC or FOCUSS) appeared -1.4% to -7.1% smaller, compared to that of standard cine, depending on CF from (2 to 8). End-systolic volume (ESV) appeared +1.6% to +14.3% larger, stroke volume (SV), -2.4% to -16.4% smaller, and ejection fraction (EF), -1.1% to -9.2% smaller, with P < 0.05. Bias was reduced from -5.6% to -1.8% for EF, by compensation applied to real-time CS-cine (CF = 8). Conclusion: Loss of temporal resolution by adopting missing data from nearby cardiac frames, causes an underestimation for EDV, and an overestimation for ESV, resulting in underestimations for SV and EF. The bias is not random. Thus it should be removed or reduced for better diagnosis. A fixed compensation is suggested, to reduce bias in the assessment of LVF.

Fast Cardiac CINE MRI by Iterative Truncation of Small Transformed Coefficients

  • Park, Jinho;Hong, Hye-Jin;Yang, Young-Joong;Ahn, Chang-Beom
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.1
    • /
    • pp.19-30
    • /
    • 2015
  • Purpose: A new compressed sensing technique by iterative truncation of small transformed coefficients (ITSC) is proposed for fast cardiac CINE MRI. Materials and Methods: The proposed reconstruction is composed of two processes: truncation of the small transformed coefficients in the r-f domain, and restoration of the measured data in the k-t domain. The two processes are sequentially applied iteratively until the reconstructed images converge, with the assumption that the cardiac CINE images are inherently sparse in the r-f domain. A novel sampling strategy to reduce the normalized mean square error of the reconstructed images is proposed. Results: The technique shows the least normalized mean square error among the four methods under comparison (zero filling, view sharing, k-t FOCUSS, and ITSC). Application of ITSC for multi-slice cardiac CINE imaging was tested with the number of slices of 2 to 8 in a single breath-hold, to demonstrate the clinical usefulness of the technique. Conclusion: Reconstructed images with the compression factors of 3-4 appear very close to the images without compression. Furthermore the proposed algorithm is computationally efficient and is stable without using matrix inversion during the reconstruction.

Contrast-Enhanced Magnetic Resonance Imaging at True End-Diastole to Quantify Reproducible Transmural Extent of Myocardial Hyperenhancement

  • 최병욱;최규옥;김영진;정남식;임세중
    • Proceedings of the KSMRM Conference
    • /
    • 2003.10a
    • /
    • pp.44-44
    • /
    • 2003
  • To determine feasibility of contrast-enhanced MRI (co-MRI) at true end-diastole (ED) free from limitation of time for inversion-recovery and trigger window for quantifying transmural extent of infarction. 대상 및 방법: MRI was performed in 18 patients with myocardial infarction. Cine imaging and co-MRI with same registered slices in short axis were peformed. To allow true ED co-MRI, ECG synchronization should use two RR-intervals for one acquisition of a segment of k-space by setting the heart rate to half that of the true heart rate. Trigger delay time was adjusted to the RR-interval for imaging at ED and to the sum of RR-interval plus the time between R-wave and the end-systole (ES) determined in cine images for imaging at ES.

  • PDF

Contrast-Enhanced Magnetic Resonance Imaging at True End-Diastole to Quantify Reproducible Transmural Extent of Myocardial Hyperenhancement

  • 최병욱;최규옥;김영진;정남식;임세중
    • Proceedings of the KSMRM Conference
    • /
    • 2003.10a
    • /
    • pp.91-91
    • /
    • 2003
  • To determine feasibility of contrast-enhanced MRI (co-MRI) at true end-diastole (ED) free from limitation of time for inversion-recovery and trigger window for quantifying transmural extent of infarction. 대상 및 방법: MRI was peformed in 18 patients with myocardial infarction. Cine imaging and co-MRI with same registered slices in short axis were performed. To allow true ED co-MRI, ECG synchronization should use two RR-intervals for one acquisition of a segment of k-space by setting the heart rate to half that of the true heart rate. Trigger delay time was adjusted to the RR-interval for imaging at ED and to the sum of RR-interval plus the time between R-wave and the end-systole (ES) determined in cine images for imaging at ES.

  • PDF

Quantitative Evaluation of the First Order Creatine-Kinase Reaction Rate Constant in in vivo Shunted Ovine Heart Treated with Oxandrolone Using Magnetization Transfer 31P Magnetic Resonance Spectroscopy (MT-31P-MRS) and 1 H/31P Double-Tuned Surface Coil: a Preliminary Study

  • Thapa, Bijaya;Dahl, Marjanna;Kholmovski, Eugene;Burch, Phillip;Frank, Deborah;Jeong, Eun-Kee
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.1
    • /
    • pp.26-36
    • /
    • 2018
  • Purpose: Children born with single ventricle physiology demonstrate poor growth rate and suffer from malnutrition, which lead to increased morbidity and mortality in this population. We assume that an anabolic steroid, oxandrolone, will promote growth in these infants by improving myocardial energy utilization. The purpose of this paper is to study the efficacy of oxandrolone on myocardial energy consumption in these infants. Materials and Methods: We modeled single ventricle physiology in a lamb by prenatally shunting the aorta to the pulmonary artery and then postnatally, we monitored cardiac energy utilization by quantitatively measuring the first order reaction rate constant, $k_f$ of the creatine-kinase reaction in the heart using magnetization transfer $^{31}P$ magnetic resonance spectroscopy, home built $^1H/^{31}P$ transmit/receive double tuned coil, and transmit/receive switch. We also performed cine MRI to study the structure and dynamic function of the myocardium and the left ventricular chamber. The spectroscopy data were processed using home-developed python software, while cine data were analyzed using Argus software. Results: We quantitatively measured both the first order reaction rate constant and ejection fraction in the control, shunted, and the oxandrolone-treated lambs. Both $k_f$ and ejection fraction were found to be more significantly reduced in the shunted lambs compared to the control lambs, and they are increased in oxandrolone-treated lambs. Conclusion: Some improvement was observed in both the first order reaction rate constant and ejection fraction for the lamb treated with oxandrolone in our preliminary study.

Measurement of Flow Velocity and Flow Visualization with MR PC Image (MR PC 영상을 이용한 유체 흐름 분석)

  • Kim, S.J.;Lee, D.H.;Min, B.G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.127-130
    • /
    • 1997
  • Phase-contrast(PC) methods have been used for quantitative measurements of velocity and volume flow rate. In addition, phase contrast cine magnetic resonance imaging (MRI) combines the flow dependent contrast of PC MRI with the ability of cardiac cine imaging to produce images throughout the cardiac cycle. In this method, the through-plane velocity has been encoded generally. However, the accuracy of the flow data can be reduced by the effect of flow direction, finite slice thickness, resolution, pulsatile flow pattern, and so on. In this study we calculated the error caused by misalignment of tomographic plane and flow directon. To reduce this error and encode the velocity for more complex flow, we suggested 3 directional velocity encoding method.

  • PDF