• Title/Summary/Keyword: Chrysosporium

Search Result 84, Processing Time 0.028 seconds

Improving Nutritional Quality of Cocoa Pod (Theobroma cacao) through Chemical and Biological Treatments for Ruminant Feeding: In vitro and In vivo Evaluation

  • Laconi, Erika B.;Jayanegara, Anuraga
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.3
    • /
    • pp.343-350
    • /
    • 2015
  • Cocoa pod is among the by-products of cocoa (Theobroma cacao) plantations. The aim of this study was to apply a number of treatments in order to improve nutritional quality of cocoa pod for feeding of ruminants. Cocoa pod was subjected to different treatments, i.e. C (cocoa pod without any treatment or control), CAm (cocoa pod+1.5% urea), CMo (cocoa pod+3% molasses), CRu (cocoa pod+3% rumen content) and CPh (cocoa pod+3% molasses+Phanerochaete chrysosporium inoculum). Analysis of proximate and Van Soest's fiber fraction were performed on the respective treatments. The pods were then subjected to an in vitro digestibility evaluation by incubation in rumen fluid-buffer medium, employing a randomized complete block design (n = 3 replicates). Further, an in vivo evaluation of the pods (35% inclusion level in total mixed ration) was conducted by feeding to young Holstein steers (average body weight of $145{\pm}3.6kg$) with a $5{\times}5$ latin square design arrangement (n = 5 replicates). Each experimental period lasted for 30 d; the first 20 d was for feed adaptation, the next 3 d was for sampling of rumen liquid, and the last 7 d was for measurements of digestibility and N balance. Results revealed that lignin content was reduced significantly when cocoa pod was treated with urea, molasses, rumen content or P. chrysosporium (p<0.01) with the following order of effectiveness: CPh>CAm>CRu>CMo. Among all treatments, CAm and CPh treatments significantly improved the in vitro dry matter and organic matter digestibility (p<0.05) of cocoa pod. Average daily gain of steers receiving CAm or CPh treatment was significantly higher than that of control (p<0.01) with an increase of 105% and 92%, respectively. Such higher daily gain was concomitant with higher N retention and proportion of N retention to N intake in CAm and CPh treatments than those of control (p<0.05). It can be concluded from this study that treatment with either urea or P. chrysosporium is effective in improving the nutritive value of cocoa pod.

Kraft Pulping Characteristics by Bio-pretreatment with White-rot Fungus (백색부후균 생물 전처리에 의한 Kraft Pulp화 특성)

  • Kang, Kyu-Young;Jo, Byoung-Muk;Oh, Jung-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.103-110
    • /
    • 2001
  • Bio-kraft pulping of Populus alba${\times}$glandulosa pretreated with white-rot fungus, Phanerochaete chrysosporium KCCM 34740, was investigated The biopulping efficiency was evalued based on fungal pretreatment time and properties of bio-kraft pulp (pulp yield, freeness, WRY, kappa number and brightness) in comparison to the controls. Pretreatment of poplar wood chips with Phanerochaete chrysosporium KCCM 34740 for 10days resulted in a some increase in screened yield (by 2%). According to increase of fungal incubation time, decrease in freeness (CSF) and increase in WRY were observed And bio-kraft pulping also led to improvement of physical properties of handsheet. As a result of bio-beating effect, we expect the saving of chemicals in kraft cooking process and energy consumption in beating process.

  • PDF

Biodegradation of Kraft Lignins by White-Rot Fungi(I) -Lignin from Pitch Pine- (백색부후균에 의한 크라프트 리그닌의 분해(I) -리기다소나무 리그닌-)

  • 김명길;안원영
    • Journal of Korea Foresty Energy
    • /
    • v.17 no.1
    • /
    • pp.56-70
    • /
    • 1998
  • This study was carried out to investigate the structural characteristics of kraft lignin and the wood degrading characteristics, the productivity of ligninolytic enzymes and the enzymatic degradation of kraft lignin by white-rot fungi. To purify kraft lignin, precipitation of kraft pulping black liquors of pitch pine meal was done by titration with lN $H_{2}SO_{4}$ reaching to pH 2, and isolation of the precipitates done by centrifugation. The isolated precipitates from pitch pine were redissloved in lN NaOH, reprecipitated by titration with lN $H_{2}SO_{4}$, washed with deionized water, and kept ofr analysis after freeze drying. Fractionation of the precipitates in solution by successive extraction with $CH_{2}Cl_{2}$ and MeOH, and the fractionates were named SwKL, SwKL I, SwKL II, and SwKL III for pitch pine kraft lignin. The more molecular weights of kraft lignin increased, the less phenolic hydroxyl groups and the more aliphatic hydroxyl groups. Because as the molecular weights increased, the ratio of etherified guaiayl/syringyl(G/S ratio) and the percentage were increased. The spectra obtained by 13C NMR and FTIR assigned by comparing the chemical shifts of various signals with shifts of signals from autherized ones reported. The optimal growth temperature and pH of white-rot fungi in medium were $28^{\circ}C$ and 4.5-5.0, respectively. Especially, in temperature and pH range, and mycelial growth, the best white-rot fungus selected was Phanerochaete chrysosporium for biodegradation. For the degradation pathways, the ligninolytic fungus jcultivated with stationary culture using medium of 1% kraft lignin as a substrate for 3 weeks at $28^{\circ}C$. The weight loss of pitch pine kraft lignin was 15.8%. The degraded products extracted successively methoanol, 90% dioxane and diethyl ether. The ether solubles were analyzed by HPLC. Kraft lignin degradation was initiated in $\beta$-O-4 bonds of lignin by the laccase from Phanerochaete chrysosporium and the degraded compounds were produced from the cleavage of $C\alpha$-$C\beta$ linkages at the side chains by oxidation process. After $C\alpha$-$C\beta$ cleavage, $C\alpha$-Carbon was oxidized and changed into aldehyde and acidic compounds such as syringic acid, syringic aldehyde and vanilline. And the other compound as quinonemethide, coumarin, was analyzed. The structural characteristics of kraft lignin were composed of guaiacyl group substituted functional OHs, methoxyl, and carbonyl at C-3, -4, and -5 and these groups were combinated with $\alpha$ aryl ether, $\beta$ aryl ether and biphenyl. Kraft lignin degradation pathways by Phanerochaete chrysosporium were initially accomplished cleavage of $C\alpha$-$C\beta$ linkages and $C\alpha$ oxidation at the propyl side chains and finally cleavage of aromatic ring and oxidation of OHs.

  • PDF

Screening of Outstanding White Rot Fungi for Biodegradation of Organosolv Lignin by Decolorization of Remazol Brilliant Blue R and Ligninolytic Enzymes Systems (Remazol Brilliant Blue R 탈색능과 리그닌 분해 효소시스템을 이용한 유기용매 리그닌 생분해 우수 균주 선별)

  • Hong, Chang-Young;Kim, Ho-Yong;Jang, Soo-Kyeong;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.19-32
    • /
    • 2013
  • In this study, outstanding white rot fungi for biodegradation of organosolv lignin were selected on the basis of their ligninolytic enzyme system. Fifteen white rot fungi were evaluated for their ability to decolorize Remazol Brilliant Blue R (RBBR) in SSC and MEB medium, respectively. Six white rot fungi (Ceriporiopsis subvermispora, Ceriporia lacerate, Fomitopsis insularis, Phanerochaete chrysosporium, Polyporus brumalis, and Stereum hirsutum) decolorized RBBR rapidly in SSC medium within 3 days. The protein contents as well as the activities of manganese peroxidase (MnP) and laccase for 6 selected fungi were determined on the SSC medium with and without organosolv lignin. Interestingly, extracellular protein concentrations were determined to relative higher for S. hirsutum and P. chrysosporium in the presence of organosolv lignin than others. On the other hands, each fungus showed a different ligninolytic enzyme pattern. Among them, F. insularis resulted the highest ligninolytic enzyme activities on incubation day 6, indicating of 1,545 U/mg of MnP activity and 1,259 U/mg of laccase activity. In conclusion, $STH^*$ and FOI were considered as outstanding fungi for biodegradation of organosolv lignin, because $STH^*$ showed high extracellular protein contents and ligninolytic enzyme activities over all, and ligninolytic enzyme activities of FOI were the highest among white rot fungi used in this study.

Mechanism Used by White-Rot Fungus to Degrade Lignin and Toxic Chemicals

  • Chung, Nam-Hyun;Lee, Il-Seok;Song, Hee-Sang;Bang, Won-Gi
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.6
    • /
    • pp.737-752
    • /
    • 2000
  • Wood-rotting basidiomycetous fungi are the most efficient degraders of lignin on earth. The white-rot fungus Phanerochaete chrysosporium has been used as a model microorganism in the study of enzymology and its application. Because of the ability of the white-rot fungus to degrade lignin, which has an irregular structure and large molecular mass, this fungus has also been studied in relation to degrading and mineralizing many environmental pollutants. The fungus includes an array of enzymes, such as lignin peroxidase (LiP), manganese-dependent peroxidase (MnP), cellobiose:quinone oxidoreductase, and $H_2O_2$-producing enzymes and also produces many other components of the ligninolytic system, such as veratryl alcohol (VA) and oxalate. In addition, the fungus has mechanisms for the reduction of degradation intermediates. The ligninolytic systems have been proved to provide reductive reactions as well as oxidative reactions, both of which are essential for the degradation of lignin and organopollutants. Further study on the white-rot fungus may provide many tools to both utilize lignin, the most abundant aromatic polymer, and bioremediate many recalcitrant organopollutants.

  • PDF

Decolorization of Landfill Leachate by White-Rot Fungi (백색부후균에 의한 매립지 침출수의 색도 제거)

  • 김현영;송홍규
    • Korean Journal of Microbiology
    • /
    • v.33 no.1
    • /
    • pp.43-48
    • /
    • 1997
  • 여러가지 난분해성 물질에 대한 생분해능을 지닌 백색부후균에 의한 매립지 침출수의 탈색을 조사하였다. 국내에서 분리한 Coriolus versicolor KR-11W와 Irpex lacteus KR-39W가 이제까지 주로 연구되어 온 Phanerochaete chrysosporium보다 높은 탈색능을 나타내었는데 I. lacteus KR-39W는 산소공급시 10%의 침출수가 함유된 YMG 배지의 진탕배양에서 85%의 색도제거율을 나타내었으며 최소배지에서도 80%의 탈색율을 보였다. P. chrysosporium에 의한 리그닌 분해능 및 분해효소 생성 보고들과 달리 진탕배양이 정치배양보다 탈색능이 높았으며 산소공급은 색도제거에 증가효과가 있었다. 균체 접종량(10-30%)과 온도(25,37.deg. C)는 탈색에 큰 차이를 보이지 않았으나 탄소원과 질소원의 농도는 상당한 영향을 나타내었다. 리그닌 분해효소군의 여러 가지 inducer와 cofactor를 C. versicolor KR-11W 배양에 첨가한 결과 많은 경우 균접종 대조군보다 2배 이상의 탈색율과 lignin peroxidase 활성의 증가를 보였으며 FeS $O_{5}$ 첨가시에는 최대 2.9배의 증가를 나타내었다. 탈색에 관여하는 효소군은 접종물에 이미 어느 정도 존재할 수 있으며 배지 및 배양조건에 따라 그 생성이 변화할 수 있으므로 이런 조건들을 잘 맞출 경우 보다 높은 탈색능이 기대된다.

  • PDF

Evolutionary Relationships of the Genus Trichoderma and Related Taxa Based on the Partial Sequences of 18S Ribosomal RNA (18S 리보좀 RNA 부분 염기서열에 의한 Trichoderma속 및 관련 불완전균류의 진화학적 유연관계)

  • Lee, Goang-Jae;An, Won-Gun;Lee, Jae-Dong;Joo, Woo-Hong
    • The Korean Journal of Mycology
    • /
    • v.23 no.4 s.75
    • /
    • pp.318-324
    • /
    • 1995
  • The evolutionary relationships of the genus Trichoderma and related taxa were assessed using partial sequencing of 18S ribosomal RNA. Phylogenetic tree divided into three major groups; 1. Saccharomyces cerevisiae-Geotrichum klebahnii-Alternaria mali group; 2. Neurospora crassa-Aspergillus-Penicillium-Chrysosporium pannorum-Scopulariopsis sp. group; 3. Trichoderma group. The genus Trichoderma seemed to be phylogenetically separated from Saccharomyces cerevisiae, Aspergillus and Penicillium groups, and have passed through it's own evolutionary pathway.

  • PDF

Screening of White Rot Fungi with Selective Delignification Capacity for Biopulping (백색목재부후균중 Biopulping에 이용가능한 선택적 리그닌분해균의 스크리닝)

  • Lee, Jong-Kyu;Oh, Eun-Sung
    • The Korean Journal of Mycology
    • /
    • v.26 no.2 s.85
    • /
    • pp.144-152
    • /
    • 1998
  • To obtain white rot fungi which have selective delignification capacity and can be used in biopulping processes, 94 different wood rotting fungi were screened and the capabilities of selected species were evaluated on deciduous and coniferous wood blocks. White rot fungi, first of all, were selected by simple enzyme tests, i.e., cellulase activity test; phenol oxidase activity test; laccase and peroxidase activity test. Most organisms that gave a positive Bavendamm gave a strongly positive laccase test with syringaldazine whereas most of those that gave a negative Bavendamm test also negative test for laccase and peroxidase, even if some exceptions were noted. Wood decay experiement were carried out to select fungal species with selective lignin-degrading ability by inoculating selected fungi to both wood blocks of Populus tomentiglandulosa and Larix leptolepis. After 12 weeks of incubation, weight losses, lignin losses, and morphological characteristics of the decayed wood were investigated. Almost all fungi tested caused 2 or more times of weight losses in P. tomentiglandulosa than in L. leptolepis, while no weight losses were detected from the un-inoculated wood blocks. Ceriporiopsis subvermispora and Phanerochaete chrysosporium were the best delignifiers for both hardwood and softwood. P. chrysosporium, however, was less effective than C. subvermispora. Bjerkandera adusta and two unidentified spp. caused delignification for only P. tomentiglandulosa. B. adusta caused simultaneous rot of all cell wall components, resulted in thinning of the secondary cell wall layers. Other fungi caused selective delignification resulting in the removal of lignin from middle lamella and separation of cells from each other.

  • PDF

Screening of Wood-Rotting Fungi for Efficient Decolorization of Draft Pulp Bleaching Effluents

  • Lee, Seon-Ho
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.5
    • /
    • pp.95-100
    • /
    • 1999
  • In order to find fungi having high treatment activity of kraft pulp bleaching (E1) effluent without any additional nutrietns, 124 strains of white-rot fungi were isolated from decayed wood samples. The author isolated five fungi(KS-62, MZ-400 , YK-719, YK-472 and Phanerochaete sordida YK-624) having high-decolorization activity of the E1 effluent. Particularly, the fugus KS-62 show the high effect of the decolorization and the degradation of the chlorinated lignin in the E1 , effluent compared with Coriolus versicolor and Phanerochaete chrysosporium.

  • PDF