• Title/Summary/Keyword: Chrysanthemum indicum flower oil

Search Result 7, Processing Time 0.023 seconds

Safety Evaluation of Chrysanthemum indicum L. Flower Oil by Assessing Acute Oral Toxicity, Micronucleus Abnormalities, and Mutagenicity

  • Hwang, Eun-Sun;Kim, Gun-Hee
    • Preventive Nutrition and Food Science
    • /
    • v.18 no.2
    • /
    • pp.111-116
    • /
    • 2013
  • Chrysanthemum indicum is widely used to treat immune-related and infectious disorders in East Asia. C. indicum flower oil contains 1,8-cineole, germacrene D, camphor, ${\alpha}$-cadinol, camphene, pinocarvone, ${\beta}$-caryophyllene, 3-cyclohexen- 1-ol, and ${\gamma}$-curcumene. We evaluated the safety of C. indicum flower oil by conducting acute oral toxicity, bone marrow micronucleus, and bacterial reverse mutation tests. Mortality, clinical signs and gross findings of mice were measured for 15 days after the oral single gavage administration of C. indicum flower oil. There were no mortality and clinical signs of toxicity at 2,000 mg/kg body weight/day of C. indicum flower oil throughout the 15 day period. Micronucleated erythrocyte cell counts for all treated groups were not significantly different between test and control groups. Levels of 15.63~500 ${\mu}g$ C. indicum flower oil/plate did not induce mutagenicity in S. Typhimurium and E. coli, with or without the introduction of a metabolic activation system. These results indicate that ingesting C. indicum flower oil produces no acute oral toxicity, bone marrow micronucleus, and bacterial reverse mutation.

Volatile Aroma Composition of Chrysanthemum indicum L. Flower Oil

  • Chang, Kyung-Mi;Kim, Gun-Hee
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.2
    • /
    • pp.122-127
    • /
    • 2008
  • The aroma constituents of Chrysanthemum indicum L. were separated by the hydro distillation extraction method using a Clevenger-type apparatus, and were analyzed by gas chromatography-mass spectrometry (GC/MS). The yield of Chrysanthemum indicum L. flower oil was 2.0% (w/w) and the color was light golden yellow. Sixty-three volatile flavor components, which make up 89.28% of the total aroma composition of the flower oil, were tentatively characterized. This essential oil contained 35 hydrocarbons (48.75%), 12 alcohols (19.92%), 6 ketones (15.31%), 3 esters (4.61%), 5 aldehydes (0.43%), 1 oxide (0.22%), and 1 miscellaneous component (0.04%). ${\alpha}$-Pinene (14.63%), 1,8-cineol (10.71%) and chrysanthenone (10.01%) were the predominant volatile components in Chrysanthemum indicum L., an aromatic medicinal herbaceous plant.

Effects of Nitrogen Application on Growth and Bioactive Compounds of Chrysanthemum indicum L. (Gamgug) (질소시비가 감국의 생육 및 유효성분에 미치는 영향)

  • Kim, Dong-Kwan;Lee, Kyung-Dong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.5
    • /
    • pp.363-368
    • /
    • 2009
  • To fulfill the increasing demand for a high quality of flower, we investigated the effects of nitrogen application on plant growth, yield and bioactive compounds of Chrysanthemum indicum L.. C. indicum L. was cultivated in a pot scale, and nitrogen applied with the level of 0 (N0), 50 (N50), 100 (N100), 150 (N150), 200 (N200) and $300\;(N300)\;kg\;ha^{-1}$ to suggest optimum rate of nitrogen fertilization. Phosphate and potassium applied the same amount of $80-80\;kg\;ha^{-1}$ ($P_2O_5-K_2O$) in all treatments. Growth characteristics and yields of C. indicum L. were significantly affected by nitrogen application. Maximum yield achieved in 265 and $295\;kg\;ha^{-1}$ N treatment on the whole plant and the flower parts, respectively. The nitrogen content and uptake of whole plant significantly increased by the increase of nitrogen application. Five major components of essential oil, $\alpha$-pinene, 1,8-cineol, chrysanthenone, germacrene-D, and $\alpha$-curcumene in flowerheads of C. indicum L. occupied approximately 40% of peak area, germacrene-D decreased by the increase of nitrogen application among them. However, cumambrin A contents in the flower parts of C. indicum L. were affected negatively by the increase of nitrogen application, but total yields of cumambrin A in flower part significantly increased. Conclusively, nitrogen fertilization could increase the yield of flowerheads. The optimum application level of nitrogen fertilizer might be on the range of $265-295\;kg\;ha^{-1}$ in a mountainous soil.

Comparative Chemical Composition of Domestic and Imported Chrysanthemum indicum L. Flower Oils

  • Chang, Kyung-Mi;Kim, Gun-Hee
    • Food Science and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.1288-1292
    • /
    • 2009
  • Volatile flavor compounds were isolated from the flowers of Chrysanthemum indicum L. (gamguk) produced in Korea and China by the hydro distillation, and were analyzed by gas chromatography-mass spectrometry (GC/MS). The yield of oils from Korean and Chinese gamguk were 2.0 and 0.5%(v/w), respectively. Sixty-three volatile compounds of Korean gamguk representing 89.28% of the total peak area were tentatively identified, including 35 hydrocarbons, 12 alcohols, 6 ketones, 3 esters, 5 aldehydes, 1 oxide, and 1 miscellaneous component. Thirty-six volatile components of Chinese gamguk constituted 58.15% of the total volatile composition were tentatively characterized, consisting of 19 hydrocarbons, 7 alcohols, 2 ketones, 2 esters, 4 aldehydes, 1 oxide, and 1 miscellaneous component. The predominant components of Korean oil were ${\alpha}$-pinene, 1,8-cineol, and chrysanthenone. Whereas, camphor, ${\alpha}$-curcumene, and ${\beta}$-sesquiphellandrene were the main aroma compounds of Chinese gamguk.

Chemical properties and antioxidant activity of essential oils of Chrysanthemum morifolium Ramat. and Chrysanthemum indicum L. in Vietnam

  • Thi-Hoan Luong;Dang-Minh-Chanh Nguyen;Thi-Nga Trinh;Viet-Cuong Han;Woo-Jin Jung
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.4
    • /
    • pp.367-374
    • /
    • 2022
  • In recent years, research into medicinal herbs with antioxidative activities has increased. Chrysanthemum morifolium and Chrysanthemum indicum are aromatic herb plants and that have long been used in traditional Vietnamese medicine. This study aims to evaluate the chemical compositions and antioxidative activities of essential oils hydrodistilled from the flower heads of C. morifolium and C. indicum. The chemical compositions of the essential oils were compared using gas chromatography/mass spectrometry (GC/MS) analysis. The antioxidative activity was determined and evaluated spectroscopically by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, metal chelating activity, reducing power, and total antioxidant capacity assays. According to the GC/MS results, chrysanthenone was predominant in the essential oils of both C. morifolium (64.14%) and C. indicum (32.02%). This is the first report of the identification of chrysanthenone as a major constituent of the essential oil of C. morifolium. Both Chrysanthemum oils were also revealed to possess antioxidant potential, exhibiting high antioxidative activities. In particular, the DPPH radical scavenging activities of the C. morifolium and C. indicum oils at a concentration of 100 mg/mL were 76.9 and 83.2%, respectively. The metal chelating values of C. morifolium and C. indicum were 0.85 and 0.76, whereas the reducing power values of that at 100 mg/mL were 0.76 and 0.71, respectively. This study provides the chemical properties of the essential oils of both C. morifolium and C. indicum grown in Vietnam and their potential antioxidant capacity.

Effects of Cultivation Methods on Yield and Essential Oils of Chrysanthemum indicum L. (Gamgug)

  • Lee, Chang-Hoon;Lee, Kyung-Dong
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.4
    • /
    • pp.356-361
    • /
    • 2008
  • Chrysanthemum indicum L. (Gamgug) has been examined to study their flowering habits, yields and bioactive compounds under different planting densities and mowing dates. The planting density experiment revealed a significantly increasing stem diameter, number of flowers and branches with decreasing plant density in the $100\;cm{\times}30\;cm$ and $130\;cm{\times}30\;cm$ treatments as compared to $70\;cm{\times}30\;cm$ treatments, but not plant height, leaf and flower width. On the other hand, the mowing date experiment showed that growth characteristics of plants were similar to the control plants (not mowing) and June 20 treatment, but July 20 treatments had significantly smaller than the control. The weights (g $plant^{-1}$) of dry flowers were affected by the planting density and mowing date. The flower yield of $586\;kg\;ha^{-1}$ obtained at $100\;cm{\times}30\;cm$ density was 11% and 22% higher than that of $120\;cm{\times}30\;cm$ and $70\;cm{\times}30\;cm$ treatments, respectively. The yield of dry flowers in the control and June 20 mowing date ranged $495-508\;kg\;ha^{-1}$, which is 40-42% higher than the yield in the July 20 treatments. The amount of essential oil (g $plant^{-1}$) in medically valuable flowerheads of C. indicum L. was statistically different between mowing dates but not among planting densities. The study showed that planting density and the mowing date could increase yields of flowerheads. An optimum planting density of $100\;cm{\times}30\;cm$ and mowing date of on or before June 20 is recommended for C. indicum L.

A Comparative Study for Obtaining Maximum Essential Oil from Six Herbs on the Basis of Harvesting Time, Cultivation Regions & Type, and Drying Methods (주요 허브의 고품질 정유생산을 위한 수확시기, 재배지역, 재배형태 및 건조방법)

  • Choi, In-Young;Song, Young-Ju;Choi, Dong-Chil;Lee, Wang-Hyu
    • Horticultural Science & Technology
    • /
    • v.28 no.3
    • /
    • pp.492-496
    • /
    • 2010
  • This experiment was carried out to obtain the maximum quantity of essential oil on the basis of harvesting time, cultivation regions & types, and drying methods. We have selected 6 native and introduced herbs viz. $Thymus$ $quinquecostatus$, $Agastache$ $rugosa$, $Chrysanthemum$ $indicum$, $Rosmarinus$ $officinalis$, $Chamaemelum$ $nobile$, and $Lavandula$ $stoechas$. The quantity of essential oil ranged from 0.06% to 3.46% in all six herbs. Native herbs produce 30.5% higher quantity of oil in comparison to introduced herbs. The quantity of essential oil obtained from $Lavandula$ $stoechas$ was 3.46%, followed by $Rosmarinus$ $officinalis$ 2.89%, while minimum in $Agastache$ $rugosa$ 0.60%. Higher quantity of essential oil obtained if they are cultivated under rain shelter culture (PE film) in comparison to open field conditions. Recovery of essential oil is always high if herbs flower in July. Semi-alpine region was found better than the plain region for herbs production. Quantity of oil is high if oil is extracted from fresh herbs followed by freezed herbs, shade dry and hot wind dry herbs. As far as plant part is concern flower produced maximum oil than any other part.