• Title/Summary/Keyword: Chronic neutrophilic leukemia

Search Result 5, Processing Time 0.022 seconds

Development of Chronic Neutrophilic Leukemia

  • Seo, Byoung-Boo;Park, Hum-Dai
    • Reproductive and Developmental Biology
    • /
    • v.35 no.4
    • /
    • pp.415-420
    • /
    • 2011
  • The experimental manipulation of protooncogenes and their gene products is a valuable research tool for the study of human neoplasia. In this study, the recently identified human cervical cancer protooncogene (HccR-2) was expressed in transgenic mice under the control of the tetracycline regulatory system. Mice expressing the HccR-2 transgene showed an altered myeloid development characterized by an increased percentage of mature and band-form neutrophils in the peripheral blood, liver and spleen. This phenotype is similar to human chronic neutrophilic leukemia (CNL) in many ways, which is a rare chronic myeloproliferative disorder (CMD) that presents as a sustained leukocytosis of mature neutrophils with a few or no circulating immature granulocytes, an absence of peripheral blood monocytosis, basophilia, or eosinophilia, and an infiltration of neutrophils into the liver, spleen and kidney. Thus, the HccR-2 transgenic mouse model is imperative not only for investigating the biological properties of the HccR-2 protooncogene in vivo, but also for analyzing the mechanisms involved in the progression of CNL.

Novel Disease Model of Chronic Neutrophilic Leukemia

  • Seo, Byoung-Boo;Min, Sung-Hun;Lee, Eun-Ji;Ryoo, Zae-Young;Park, Hum-Dai
    • Reproductive and Developmental Biology
    • /
    • v.35 no.4
    • /
    • pp.421-425
    • /
    • 2011
  • The experimental manipulation of protooncogenes and their gene products is a valuable research tool for the study of human neoplasia. In this study, the recently identified human cervical cancer protooncogene (HccR-2) was expressed in transgenic mice under the control of the tetracycline regulatory system. The phenotype observed was similar in many respects to human chronic neutrophilic leukemia (CNL). Thus, the HccR-2 transgenic mouse model is important not only for investigating the biological properties of the HccR-2 protooncogene in vivo, but also for analyzing the mechanisms involved in the progression of CNL.

Novel Disease Model of Chronic Neutrophilic Leukemia: by Using the Tet-off System

  • Park, Jun-Hong;Lee, Young-Soon;Ryoo, Zae-Young
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.107-107
    • /
    • 2003
  • The activation of protooncogenes or the inactivation of their gene products may be a specific and effective functional study for human neoplasia. To examine this possibility, we have used the tetracycline regulatory system to generate transgenic mice that conditionally express the HccR-2 protooncogene in vivo. The new human cervical cancer protooncogene (HccR-2) was detected from cervical cancer cell line. To elucidate its biological functions, we generated transgenic mice that expressed the HccR-2 gene. The sustained expression of the HccR-2 transgene culminated chronic neutrophilic leukemia (CNL). CNL is a rare chronic myeloproliferative disorder that presents as a sustained, mature neutrophilic leukocytosis with few or no circulating immature granulocytes, the absence of peripheral blood monocytosis, basophilia, or eosinophilia, and infiltration of neutrophils at the liver, spleen and kidney. Mice expressing the HccR-2 and tetracycline-transactivating protein (tTa) transgene were found to have altered myeloid development that was characterized by increased percentages of mature neutrophil and band form neutrophil in the peripheral blood, liver and spleen. Activation of the transgene causes CNL. In our model, expression of HccR-2 transgene mice was similar in many respects to the human CNL. This model will be valuable not only for investigating the biological properties of the HccR-2 and other protooncogenes in vivo but also for analyzing the mechanism involved in the progression of CNL.

  • PDF

Production of the Novel Disease Animal Model by Used Tet-off System

  • Park, Jun-Hong;Kim, Kil-Soo;Lee, Eun-Ju;Kim, Myoung-Ok;Kim, Sung-Hyun;Kyoungin-Cho;Jung, Boo-Kyung;Kim, Hee-Chul;Sol ha Hwang
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.54-54
    • /
    • 2003
  • The activation of protooncogenes or the inactivation of their gene products may be a specific and effective functional study for human neoplasia. To examine this possibility, we have used the tetracycline regulatory system to generate transgenic mice that conditionally express the HccR-2 protooncogene in vivo. The new human cervical cancer protooncogene (HccR-2) was detected from cervical cancer cell line. To elucidate its biological functions, we generated transgenic mice that expressed the HccR-2 gene. The sustained expression of the HccR-2 transgene culminated chronic neutrophilic leukemia (CNL). CNL is a rare chronic myeloproliferative disorder that presents as a sustained, mature neutrophilic leukocytosis with few or no circulating immature granulocytes, the absence of peripheral blood monocytosis, basophilia, or eosinophilia, and infiltration of neutrophils at the liver, spleen and kidney. Mice expressing the HccR-2 and tetracycline-transactivating protein (tTa) transgene were found to have altered myeloid development that was characterized by increased percentages of mature neutrophil and band form neutrophil in the peripheral blood, liver and spleen. Activation of the transgene causes CNL. In our model, expression of HccR-2 transgene mice was similar in many respects to the human CNL. This model will be valuable not only for investigating the biological properties of the HccR-2 and other protooncogenes in vivo but also for analyzing the mechanism involved in the progression of CNL.

  • PDF