• Title/Summary/Keyword: Chronic inflammation

Search Result 1,014, Processing Time 0.035 seconds

Ameliorative effects of ginseng and ginsenosides on rheumatic diseases

  • Yi, Young-Su
    • Journal of Ginseng Research
    • /
    • v.43 no.3
    • /
    • pp.335-341
    • /
    • 2019
  • Background: Inflammation is a host-defensive innate immune response to protect the body from pathogenic agents and danger signals induced by cellular changes. Although inflammation is a host-defense mechanism, chronic inflammation is considered a major risk factor for the development of a variety of inflammatory autoimmune diseases, such as rheumatic diseases. Rheumatic diseases are systemic inflammatory and degenerative diseases that primarily affect connective tissues and are characterized by severe chronic inflammation and degeneration of connective tissues. Ginseng and its bioactive ingredients, genocides, have been demonstrated to have antiinflammatory activity and pharmacological effects on various rheumatic diseases by inhibiting the expression and production of inflammatory mediators. Methods: Literature in this review was searched in a PubMed site of National Center for Biotechnology Information. Results: The studies reporting the preventive and therapeutic effects of ginseng and ginsenosides on the pathogenesis of rheumatic diseases were discussed and summarized. Conclusion: Ginseng and ginsenosides play an ameliorative role on rheumatic diseases, and this review provides new insights into ginseng and ginsenosides as promising agents to prevent and treat rheumatic diseases.

The Role of Autophagy in Eosinophilic Airway Inflammation

  • Jinju Lee;Hun Sik Kim
    • IMMUNE NETWORK
    • /
    • v.19 no.1
    • /
    • pp.5.1-5.12
    • /
    • 2019
  • Autophagy is a homeostatic mechanism that discards not only invading pathogens but also damaged organelles and denatured proteins via lysosomal degradation. Increasing evidence suggests a role for autophagy in inflammatory diseases, including infectious diseases, Crohn's disease, cystic fibrosis, and pulmonary hypertension. These studies suggest that modulating autophagy could be a novel therapeutic option for inflammatory diseases. Eosinophils are a major type of inflammatory cell that aggravates airway inflammatory diseases, particularly corticosteroid-resistant inflammation. The eosinophil count is a useful tool for assessing which patients may benefit from inhaled corticosteroid therapy. Recent studies demonstrate that autophagy plays a role in eosinophilic airway inflammatory diseases by promoting airway remodeling and loss of function. Genetic variant in the autophagy gene ATG5 is associated with asthma pathogenesis, and autophagy regulates apoptotic pathways in epithelial cells in individuals with chronic obstructive pulmonary disease. Moreover, autophagy dysfunction leads to severe inflammation, especially eosinophilic inflammation, in chronic rhinosinusitis. However, the mechanism underlying autophagy-mediated regulation of eosinophilic airway inflammation remains unclear. The aim of this review is to provide a general overview of the role of autophagy in eosinophilic airway inflammation. We also suggest that autophagy may be a new therapeutic target for airway inflammation, including that mediated by eosinophils.

Effects of CPG-oligodeoxynucleotides in Chronic Inflammation and Remodeling of Airway in a Murine Model of Bronchial Asthma (기관지천식의 마우스모델에서 CPG-oligodeoxynucleotides의 기도의 만성염증 및 기도재구성에 대한 영향)

  • Song, So Hyang;Kim, Chi Hong;Dong Hwa, Han;Kim, Seung Joon;Moon, Hwa Sik;Song, Jeong Sup;Park, Sung Hak
    • Tuberculosis and Respiratory Diseases
    • /
    • v.57 no.6
    • /
    • pp.543-552
    • /
    • 2004
  • Background : Airway remodeling of the asthmatic airway, the result of persistent inflammation in the bronchial wall, is associated with irreversible airway obstruction and the severity of asthma. Previous reports had represented that adminitering CpG-oligodeoxynucleotides (CpG-ODN) before sensitization or challenge by allergens inhibits the development of eosinophilic airway inflammation in a murine model of asthma, but the effects of CpG-ODNs on chronic inflammation and airway remodeling had not been characterized. To investigate the influence of CpG-ODNs on chronic inflammation and remodeling of the airway, we performed studies using a murine model of chronic allergen-induced asthma. Methods : Balb/C mice were sensitized to ovalbumin(OVA) and subsequently exposed to nebulized OVA by means of inhalation twice weekly for 7 weeks. CpG-ODNs($30{\mu}g$) was administered intraperitoneally at sensitization. After final inhalation, mice were evaluated for airway hyperresponsiveness, chronic airway inflammation and remodeling. Results : The mice exposed to chronic and recurrent airway challenge with OVA had persistent airway hyperresponsiveness, chronic inflammation and airway remodeling. Mice treated with CpG-ODNs exhibited decreased bronchial hyperresponsiveness, OVA-specific IgE, chronic inflammation and evidence of airway remodeling, including goblet cell hyperplasia and subepithelial fibrosis. Conclusion : CpG-ODNs was thought to prevent chronic inflammation and remodeling changes in a murine model of chronic asthma.

Molecular Events on Experimental Skin Inflammation and Modulation by Topical Anti-inflammatory Flavonoids

  • Kim, Hyun-Pyo
    • Biomolecules & Therapeutics
    • /
    • v.15 no.1
    • /
    • pp.7-15
    • /
    • 2007
  • There have been various animal models of skin inflammation. These models have been used for establishing anti-inflammatory activity of the topical agents including cosmetics. Here, the molecular mechanisms of most widely-used animal models of skin inflammation including contact irritation, acute and chronic inflammation, and delayed-type hypersensitivity are summarized. Against these animal models, varieties of plant flavonoids showed anti-inflammatory activity. The action mechanisms of anti-inflammation by topical flavonoids are presented. A therapeutic potential of flavonoids is discussed.

A Mitochondrial Perspective of Chronic Obstructive Pulmonary Disease Pathogenesis

  • Kang, Min-Jong;Shadel, Gerald S.
    • Tuberculosis and Respiratory Diseases
    • /
    • v.79 no.4
    • /
    • pp.207-213
    • /
    • 2016
  • Chronic obstructive pulmonary disease (COPD) encompasses several clinical syndromes, most notably emphysema and chronic bronchitis. Most of the current treatments fail to attenuate severity and progression of the disease, thereby requiring better mechanistic understandings of pathogenesis to develop disease-modifying therapeutics. A number of theories on COPD pathogenesis have been promulgated wherein an increase in protease burden from chronic inflammation, exaggerated production of reactive oxygen species and the resulting oxidant injury, or superfluous cell death responses caused by enhanced cellular injury/damage were proposed as the culprit. These hypotheses are not mutually exclusive and together likely represent the multifaceted biological processes involved in COPD pathogenesis. Recent studies demonstrate that mitochondria are involved in innate immune signaling that plays important roles in cigarette smoke-induced inflammasome activation, pulmonary inflammation and tissue remodeling responses. These responses are reviewed herein and synthesized into a view of COPD pathogenesis whereby mitochondria play a central role.

A Case Report of Chronic Paranasal Sinusitis Who Complains Postnasal Drip (後鼻漏를 主訴로 한 慢性 副鼻洞炎 患者의 治驗 1例)

  • Kim, Chang-hwan;Sun, Young-jae;Lim, Woong-kyoung;Kim, Hyun-gi
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.16 no.2
    • /
    • pp.244-248
    • /
    • 2003
  • Paranasal sinusitis is a common disease in the otorhinolaryngology area. It is the change of inflammation at the mucous membrane which surrounds paranasal sinus. Chronic paranasal sinusitis is a chronic inflammation disease with purulent, mucous rhinorrhea, postnasal drip and cough. The attacked period continues above three months and it repeats exacerbation and remission. We diagnosed and treated an outpatient who complains postnasal drip of chronic paranasal drip of chronic paranasal sinusitis based on the Oriental medical theories and had good result.

  • PDF

Modulation of senoinflammation by calorie restriction based on biochemical and Omics big data analysis

  • Bang, EunJin;Lee, Bonggi;Noh, Sang-Gyun;Kim, Dae Hyun;Jung, Hee Jin;Ha, Sugyeong;Yu, Byung Pal;Chung, Hae Young
    • BMB Reports
    • /
    • v.52 no.1
    • /
    • pp.56-63
    • /
    • 2019
  • Aging is a complex and progressive process characterized by physiological and functional decline with time that increases susceptibility to diseases. Aged-related functional change is accompanied by a low-grade, unresolved chronic inflammation as a major underlying mechanism. In order to explain aging in the context of chronic inflammation, a new integrative concept on age-related chronic inflammation is necessary that encompasses much broader and wider characteristics of cells, tissues, organs, systems, and interactions between immune and non-immune cells, metabolic and non-metabolic organs. We have previously proposed a novel concept of senescent (seno)-inflammation and provided its frameworks. This review summarizes senoinflammation concept and additionally elaborates modulation of senoinflammation by calorie restriction (CR). Based on aging and CR studies and systems-biological analysis of Omics big data, we observed that senescence associated secretory phenotype (SASP) primarily composed of cytokines and chemokines was notably upregulated during aging whereas CR suppressed them. This result further strengthens the novel concept of senoinflammation in aging process. Collectively, such evidence of senoinflammation and modulatory role of CR provide insights into aging mechanism and potential interventions, thereby promoting healthy longevity.

$\alpha_2$-Adrenoceptors are Implicated in the Electroacupuncture-induced Analgesia of Experimental Chronic Pain (전침자극이 만성통증을 억제하는 아드레날린성 기전에 대한 연구)

  • Shin Hong-Kee;Lee Kyung-Hee;Park Dong-Suk
    • The Journal of Korean Medicine
    • /
    • v.25 no.3
    • /
    • pp.67-77
    • /
    • 2004
  • Objectives : Many studies have reported that acupuncture analgesia was mediated through the activation of peripheral and central opioid receptors. However, there has been little electrophysiological study on the adrenergic mechanism of acupuncture analgesia in chronic inflammatory and neuropathic pain. The present study was undertaken to elucidate the role of adrenoceptors in the production of acupuncture analgesia in the chronic pain model. Methods : In the rat with chronic inflammation and nerve injury, dorsal horn cell (DHC) responses to afferent C fiber stimulation were used as a pain index and changes in electroacupuncture (EA) analgesia were recorded before and after intravenous administration of selective adrenoceptor antagonists. EA stimulations (2Hz, 0.5msec, 3mA) were applied to the contralateral Zusanli point for 30 min. Results : EA stimulation induced long-lasting inhibition of DHC responses in the rat with chronic inflammation and nerve injury. In both models of inflammation and neuropathic pain, α-adrenoceptor antagonist (phentolamine) significantly attenuated an inhibitory effect of EA on DHC responses. Selective α2-adrenoceptor antagonist (yohimbine) also had a similar suppressive action on DHC responses to that of phentolamine. However, β-adrenoceptor antagonist (propranolol) did not have any inhibitory effect on DHC responses in either model of chronic pain. Conclusions : These experimental findings suggest that in rats with chronic pain, EA stimulation with low frequency and high intensity produced an analgesic effect which was mediated through an activation of α2-adrenoceptors.

  • PDF

The Effects of Bee Venom on Lipopolysaccharide (LPS)-induced Chronic Obstructive Pulmonary Disease (COPD) (봉독(蜂毒)이 Lipopolisaccharide로 유발된 Chronic Obstructive Pulmonary Disease 병태(病態) Model에 미치는 영향)

  • Park, Dong-Hee;Jung, Sung-Ki;Jung, Hee-Jae
    • The Journal of Internal Korean Medicine
    • /
    • v.32 no.2
    • /
    • pp.203-216
    • /
    • 2011
  • Objectives : This study was conducted to evaluate the protective effects of bee venom on lipopolysaccharide (LPS)-induced chronic obstructive pulmonary disease (COPD). Methods : In this study, LPS was administrated to Balb/c mice to induce a disease that resembles COPD. 2 hr prior to LPS administration, mice were treated with bee venom via an intraperitoneal injection. Total cell number and neutrophils number in bronchoalveolar lavage fluid were counted and pro-inflammatory cytokines were also measured. For histologic analysis, periodic acid Schiff (PAS) and hematoxylin and eosin (H&E) stains were evaluated. Proliferating cell nuclear antigens (PCNA) were also assessed by immunohistochemistry. Results : On 7 days after LPS stimulation, influx of neutrophils significantly decreased in the bee venom group, compared with the COPD group. In addition, TNF-a and IL-6 levels decreased in bee venom group. Histological results also demonstrated the attenuation effect of bee venom on LPS-induced lung inflammation. Conclusions : These data suggest that bee venom has protective effects on LPS-induced lung inflammation. Therefore, bee venom may represent a novel therapeutic agent for lung inflammation and in particular for COPD.

Effects of GHX02 on Chronic Obstructive Pulmonary Disease Mouse Model

  • Yang, Won-Kyung;Lyu, Yee Ran;Kim, Seung-Hyung;Park, Yang Chun
    • The Journal of Korean Medicine
    • /
    • v.39 no.4
    • /
    • pp.126-135
    • /
    • 2018
  • Objectives: Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation and irreversible airflow. This study aimed to evaluate the effects of GHX02 in a COPD-induced mouse model. Methods: The COPD mouse model was established by exposure to cigarette smoke extract and lipopolysaccharide which were administered by intratracheal injection three times with a 7 day interval. GHX02 (100, 200, 400 mg/kg) and all other drugs were orally administrated for 14 days from Day 7 to Day 21. Results: GHX02 significantly decreased the neutrophil counts in bronchoalveolar lavage fluid (BALF) and the number of $CD4^+$, $CD8^+$, $CD69^+$, and $CD11b^+/GR1^+$ cells in BALF and lung cells. GHX02 also suppressed the secretion of tumor necrosis factor-alpha ($TNF-{\alpha}$), interleukin-17A, macrophage inflammatory protein 2 (MIP2), and chemokine (C-X-C motif) ligand 1 (CXCL-1) in BALF and ameliorated the lung pathological changes. Conclusions: Thus, GHX02 effectively inhibited airway inflammation by inhibiting migration of inflammatory cells and expression of pro-inflammatory cytokines. Therefore, GHX02 may be a promising therapeutic agent for COPD.