• 제목/요약/키워드: Chromosome Engineering

검색결과 179건 처리시간 0.025초

핵형 분류를 위한 패턴 분류기 구현 (The Implementation of Pattern Classifier or Karyotype Classification)

  • 엄상희;남기곤;장용훈;이권순;정형환;김금석;전계록
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 추계학술대회
    • /
    • pp.133-136
    • /
    • 1997
  • The human chromosome analysis is widely used to diagnose genetic disease and various congenital anomalies. Many researches on automated chromosome karyotype analysis has been carried out, some of which produced commercial systems. However, there still remains much room or improving the accuracy of chromosome classification. In this paper, We propose an optimal pattern classifier by neural network to improve the accuracy of chromosome classification. The proposed pattern classifier was built up of multi-step multi-layer neural network(MMANN). We reconstructed chromosome image to improve the chromosome classification accuracy and extracted three morphological features parameters such as centromeric index(C.I.), relative length ratio(R.L.), and relative area ratio(R.A.). This Parameters employed as input in neural network by preprocessing twenty human chromosome images. The experiment results show that the chromosome classification error is reduced much more than that of the other classification methods.

  • PDF

염색체 영상의 재구성에 의한 형태학적 특징 파라메타 추출 (Morphological Feature Parameter Extraction from the Chromosome Image Using Reconstruction Algorithm)

  • 장용훈;이권순
    • 대한의용생체공학회:의공학회지
    • /
    • 제17권4호
    • /
    • pp.545-552
    • /
    • 1996
  • Researches on chromosome are very significant in cytogenetics since a gene of the chromosome controls revelation of the inheritance plasma The human chromosome analysis is widely used to diagnose genetic disease and various congenital anomalies. Many researches on automated chromosome karyotype analysis has been carried out, some of which produced commercial systems. However, there still remains much room for improving the accuracy of chromosome classification. In this paper, we propose an algorithm for reconstruction of the chromosDme image to improve the chromosome classification accuracy. Morphological feature parameters are extracted from the reconstructed chromosome images. The reconstruction method from chromosome image is the 32 direction line algorithm. We extract three morphological feature parameters, centromeric index(C.I.), relative length ratio(R.L.), and relative area ratio(R.A.), by preprocessing ten human chromosDme images. The experimental results show that proposed algorithm is better than that of other researchers'comparing by feature parameter errors.

  • PDF

염색체 핵형 분류를 위한 계층적 인공 신경회로망 분류기 구현 (The Implementation of Hierarchical Artificial Neural Network Classifier for Chromosome Karyotype Classification)

  • 전계록;최욱환;남기곤;엄상희;이권순;장용훈
    • 대한의용생체공학회:의공학회지
    • /
    • 제18권3호
    • /
    • pp.233-241
    • /
    • 1997
  • The research on chromosomes is very significant in cytogenetics since genes of the chromosomes control revelation of the inheritance plasma. The human chromosome analysis is widely used to study leukemia, malignancy, radiation hazard, and mutagen dosimetry as well as various congenital anomalies such as Down's, Klinefelter's, Edward's, and Patau's syndrome. The framing and analysis of the chromosome karyogram, which requires specific cytogenetic knowledge is most important in this field. Many researches on automated chromosome karyotype analysis methods have been carried out, some of which produced commercial systems. However, there still remains much room to improve the accuracy of chromosome classification and to reduce the processing time in real clinic environments. In this paper, we proposed a hierarchical artificial neural network(HANN) to classify the chromosome karyotype. We extracted three or four chromosome morphological feature parameters such as centromeric index, relative length ratio, relative area ratio, and chromosome length by preprocessing from ten human chromosome images. The feature parameters of five human chromosome images were used to learn HANN and the rest of them were used to classify the chromosome images. The experiment results show that the chromosome classification error is reduced much more than that of the other researchers using less feature parameters.

  • PDF

Xylan 대사유전자를가진미니효모인공염색체의가공및 Mitotic Stability 분석 (Manipulation of Mini-Yeast Artificial Chromosome Containing Xylan Metabolism Related Genes and Mitotic Stability Analysis in Yeast)

  • 강다인;김연희
    • 한국미생물·생명공학회지
    • /
    • 제50권3호
    • /
    • pp.436-440
    • /
    • 2022
  • 본 연구에서는 염색체가공기술을 이용하여 xylan으로부터 다양한 대사산물을 생산할 수 있는 유전자를 도입한 효모인 공염색체를 구축하였다. 효율적인 염색체가공기술인 PCS법을 이용하기 위해 염색체 splitting에 필요한 splitting fragment (DNA module)를 각각 제작하였고, xylan 대사에 관여하는 유전자군을 가진 YKY164 균주에 형질전환하였다. 두번의 염색체 splitting에 의해 1,124 kb의 효모 7번염색체는 887 kb-YAC, 45 kb-mini YAC와 198 kb-YAC로 가공되었으며, 총 18개의 염색체를 가진 YKY183 균주를 구축하였다. 염색체가공을 위한 splitting efficiency는 50-78%였으며, 45 kb-mini YAC 상에 있는 외래유전자의 발현 및 효소활성은 염색체가공 전과 비교하여 유의미한 변화 및 저하는 관찰되지 않았다. 또한 생산된 재조합효소에 의한 xylan의 분해산물을 확인하였으며, 160 generation 동안 미니 효모인 공염색체는 염색체의 결실없이 안정적인 mitotic stability를 유지하였다.

다단계 다층 인공 신경회로망을 이용한 염색체 핵형 분류 (Chromosome Karyotype Classification using Multi-Step Multi-Layer Artificial Neural Network)

  • 장용훈;이권순;정형환;전계록
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1995년도 추계학술대회
    • /
    • pp.197-200
    • /
    • 1995
  • In this paper, we proposed the multi-step multi-layer artificial neural network(MMANN) to classify the chromosome, Which is used as a chromosome pattern classifier after learning. We extracted three chromosome morphological feature parameters such as centromeric index, relative length ratio, and relative area ratio by means of preprocessing method from ten chromosome images. The feature parameters of five chromosome images were used to learn neural network and the rest of them were used to classify the chromosome images. The experiment results show that the chromosome classification error is reduced much more, comparing with less feature parameters than that of the other researchers.

  • PDF

영상 재구성방법을 이용한 염색체 영상의 패턴 분류 (Pattern Classification of Chromosome Images using the Image Reconstruction Method)

  • 김충석;남재현;장용훈
    • 한국정보통신학회논문지
    • /
    • 제7권4호
    • /
    • pp.839-844
    • /
    • 2003
  • 본 연구에서는 염색체의 영상패턴을 인식하고 분류하는 방법을 개선하기 위해 패턴인식의 특징정보로 사용되는 비선형적인 염색체 영상을 선형적으로 재구성하는 영상 재구성 알고리즘을 사용하여 선형화된 특징정보를 추출하여 패턴분류기인 신경회로망의 입력정보로 사용한다. 중앙축 변환방법과, 영상 재구성방법을 사용하여 임상적으로 정상인으로 판명된 20명의 염색체 영상의 특징정보를 추출하였다. 중앙축 변환방법에 의하여 추출된 특징정보의 패턴조합과 영상 재구성방법에 의하여 추출된 특징정보의 패턴조합을 구성하였으며, 10명에 대하여 추출한 특징정보를 계층적인 신경회로망(Hierarchical Multilayer Neural Network : HMNN)의 학습입력으로 사용하여 염색체를 분류하기 위한 패턴인식기를 구현하였다. 그리고 나머지 10명에 대하여 학습입력과 동일하게 조합된 패턴조합을 HMNN의 분류입력으로 사용하여 수행한 결과 약 98.26%의 우수한 인식률을 나타내는 최적화된 패턴인식기를 구현할 수 있었다.

통계적 산출방법을 이용한 염색체 위치 탐색 (Searching Location of Chromosome Using Statistical Method)

  • 송준영;김주병;윤영로;이윤선
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1995년도 춘계학술대회
    • /
    • pp.49-53
    • /
    • 1995
  • In this paper, we classify between the chromosome and blood cell, and find the location of chromosome. First, the gray level images be the binary images using the threshold method. Then, the spot noises are removed by the morphological filtering. Features are obtained using the updated Run length(RL) coding and are classified using the Bayes decision rule. The performances of classification are 83.3% in chromosome and 93.3% in blood cell. Because each sub-images ($256{\times}256$) is obtained from the full image($512{\times}512$), we realize the location of chromosome if we get the corrected chromosome classifications.

  • PDF

신경회로망을 이용한 염색체 영상의 최적 패턴 분류기 구현 (Implementation on Optimal Pattern Classifier of Chromosome Image using Neural Network)

  • 장용훈;이권순;정형환;엄상희;이영우;전계록
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 춘계학술대회
    • /
    • pp.290-294
    • /
    • 1997
  • Chromosomes, as the genetic vehicles, provide the basic material for a large proportion of genetic investigations. The human chromosome analysis is widely used to diagnose genetic disease and various congenital anomalies. Many researches on automated chromosome karyotype analysis has been carried out, some of which produced commercial systems. However, there still remains much room for improving the accuracy of chromosome classification. In this paper, we propose an optimal pattern classifier by neural network to improve the accuracy of chromosome classification. The proposed pattern classifier was built up of two-step multi-layer neural network(TMANN). We are employed three morphological feature parameters ; centromeric index(C.I.), relative length ratio(R.L.), and relative area ratio(R.A.), as input in neural network by preprocessing twenty human chromosome images. The results of our experiments show that our TMANN classifier is much more useful in neural network learning and successful in chromosome classification than the other classification methods.

  • PDF

Cooperative Behavior of Distributed Autonomous Robotic Systems Based on Schema Co-Evolutionary Algorithm

  • Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제2권3호
    • /
    • pp.185-190
    • /
    • 2002
  • In distributed autonomous robotic systems (DARS), each robot must behave by itself according to its states ad environments, and if necessary, must cooperate with other robots in order to carry out their given tasks. Its most significant merit is that they determine their behavior independently, and cooperate with other robots in order to perform the given tasks. Especially, in DARS, it is essential for each robot to have evolution ability in order to increase the performance of system. In this paper, a schema co-evolutionary algorithm is proposed for the evolution of collective autonomous mobile robots. Each robot exchanges the information, chromosome used in this algorithm, through communication with other robots. Each robot diffuses its chromosome to two or more robots, receives other robot's chromosome and creates new species. Therefore if one robot receives another robot's chromosome, the robot creates new chromosome. We verify the effectiveness of the proposed algorithm by applying it to cooperative search problem.

의사결정 모델을 위한 염색체 비분리를 적용한 가변 염색체 유전 알고리즘 (The Genetic Algorithm using Variable Chromosome with Chromosome Attachment for decision making model)

  • 박강문;신석훈;지승도
    • 한국시뮬레이션학회논문지
    • /
    • 제26권4호
    • /
    • pp.1-9
    • /
    • 2017
  • 유전 알고리즘은 생물 유전학에 기본 이론을 두는 전역 탐색 알고리즘으로, 산업, 뉴럴 네트워크, 웹, 그리고 국방 등의 분야에서 활발히 사용되고 있다. 하지만 기존의 유전 알고리즘은 염색체의 개수가 고정되어 있는 형태여서 시뮬레이션 도중 초기에 주어진 상황보다 더 복잡한 상황이 주어질 수 있는 경우에는 적용이 힘들다는 한계점이 존재한다. 본 연구에서는 이를 극복하기 위해서 염색체 비분리를 적용한 가변 염색체 유전 알고리즘을 제안하였다. 그리고 염색체 수의 변화가 시뮬레이션 결과에 영향을 미치는 것을 확인하기 위하여 대 잠수함 HVU 호위 임무 시뮬레이션에 염색체 비분리를 적용한 가변 염색체 유전 알고리즘을 적용하였다. 시뮬레이션 결과 기존의 유전 알고리즘과는 달리 가변 염색체 유전 알고리즘에서는 더 복잡한 전술이 더 일찍 등장하였으며, 그에 따라 염색체 수가 증가하는 방향으로 진화가 일어나는 것을 확인할 수 있었다.