• Title/Summary/Keyword: Chromosome Engineering

Search Result 177, Processing Time 0.027 seconds

The Implementation of Pattern Classifier or Karyotype Classification (핵형 분류를 위한 패턴 분류기 구현)

  • Eom, S.H.;Nam, K.G.;Chang, Y.H.;Lee, K.S.;Chang, H.H.;Kim, G.S.;Jun, G.R.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.133-136
    • /
    • 1997
  • The human chromosome analysis is widely used to diagnose genetic disease and various congenital anomalies. Many researches on automated chromosome karyotype analysis has been carried out, some of which produced commercial systems. However, there still remains much room or improving the accuracy of chromosome classification. In this paper, We propose an optimal pattern classifier by neural network to improve the accuracy of chromosome classification. The proposed pattern classifier was built up of multi-step multi-layer neural network(MMANN). We reconstructed chromosome image to improve the chromosome classification accuracy and extracted three morphological features parameters such as centromeric index(C.I.), relative length ratio(R.L.), and relative area ratio(R.A.). This Parameters employed as input in neural network by preprocessing twenty human chromosome images. The experiment results show that the chromosome classification error is reduced much more than that of the other classification methods.

  • PDF

Morphological Feature Parameter Extraction from the Chromosome Image Using Reconstruction Algorithm (염색체 영상의 재구성에 의한 형태학적 특징 파라메타 추출)

  • 장용훈;이권순
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.545-552
    • /
    • 1996
  • Researches on chromosome are very significant in cytogenetics since a gene of the chromosome controls revelation of the inheritance plasma The human chromosome analysis is widely used to diagnose genetic disease and various congenital anomalies. Many researches on automated chromosome karyotype analysis has been carried out, some of which produced commercial systems. However, there still remains much room for improving the accuracy of chromosome classification. In this paper, we propose an algorithm for reconstruction of the chromosDme image to improve the chromosome classification accuracy. Morphological feature parameters are extracted from the reconstructed chromosome images. The reconstruction method from chromosome image is the 32 direction line algorithm. We extract three morphological feature parameters, centromeric index(C.I.), relative length ratio(R.L.), and relative area ratio(R.A.), by preprocessing ten human chromosDme images. The experimental results show that proposed algorithm is better than that of other researchers'comparing by feature parameter errors.

  • PDF

The Implementation of Hierarchical Artificial Neural Network Classifier for Chromosome Karyotype Classification (염색체 핵형 분류를 위한 계층적 인공 신경회로망 분류기 구현)

  • Jeon, Gye-Rok;Choe, Uk-Hwan;Nam, Gi-Gon;Eom, Sang-Hui;Lee, Gwon-Sun;Jang, Yong-Hun
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.233-241
    • /
    • 1997
  • The research on chromosomes is very significant in cytogenetics since genes of the chromosomes control revelation of the inheritance plasma. The human chromosome analysis is widely used to study leukemia, malignancy, radiation hazard, and mutagen dosimetry as well as various congenital anomalies such as Down's, Klinefelter's, Edward's, and Patau's syndrome. The framing and analysis of the chromosome karyogram, which requires specific cytogenetic knowledge is most important in this field. Many researches on automated chromosome karyotype analysis methods have been carried out, some of which produced commercial systems. However, there still remains much room to improve the accuracy of chromosome classification and to reduce the processing time in real clinic environments. In this paper, we proposed a hierarchical artificial neural network(HANN) to classify the chromosome karyotype. We extracted three or four chromosome morphological feature parameters such as centromeric index, relative length ratio, relative area ratio, and chromosome length by preprocessing from ten human chromosome images. The feature parameters of five human chromosome images were used to learn HANN and the rest of them were used to classify the chromosome images. The experiment results show that the chromosome classification error is reduced much more than that of the other researchers using less feature parameters.

  • PDF

Manipulation of Mini-Yeast Artificial Chromosome Containing Xylan Metabolism Related Genes and Mitotic Stability Analysis in Yeast (Xylan 대사유전자를가진미니효모인공염색체의가공및 Mitotic Stability 분석)

  • Da-In Kang;Yeon-Hee Kim
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.3
    • /
    • pp.436-440
    • /
    • 2022
  • In this study, yeast artificial chromosome Insert (YAC) harboring genes which related xylan metabolism was constructed by using chromosome manipulation technique. For efficient chromosome manipulation, each splitting fragment (DNA module) required for splitting process was prepared and these DNA modules were transformed into Saccharomyces cerevisiae strain YKY164. By two-rounds chromosome splitting, yeast chromosome VII (1,124 kb) was split 887 kb-YAC, 45 kb-mini YAC and 198 kb-YAC and YKY183 strain containing 18 chromosomes was constructed. Splitting efficiency for chromosome manipulation was 50- 78% and expression level of foreign genes on 45 kb-mini YAC and enzyme activity were indistinguishable from that of the YKY164 strain. Furthermore, xylan-degraded products by recombinant enzymes were confirmed and mini-yeast artificial chromosome maintained stable mitotic stability without chromosome loss during 160 generations.

Chromosome Karyotype Classification using Multi-Step Multi-Layer Artificial Neural Network (다단계 다층 인공 신경회로망을 이용한 염색체 핵형 분류)

  • Chang, Yong-Hoon;Lee, Kwon-Soon;Chong, Hyeng-Hwan;Jun, Kye-Rok
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.11
    • /
    • pp.197-200
    • /
    • 1995
  • In this paper, we proposed the multi-step multi-layer artificial neural network(MMANN) to classify the chromosome, Which is used as a chromosome pattern classifier after learning. We extracted three chromosome morphological feature parameters such as centromeric index, relative length ratio, and relative area ratio by means of preprocessing method from ten chromosome images. The feature parameters of five chromosome images were used to learn neural network and the rest of them were used to classify the chromosome images. The experiment results show that the chromosome classification error is reduced much more, comparing with less feature parameters than that of the other researchers.

  • PDF

Pattern Classification of Chromosome Images using the Image Reconstruction Method (영상 재구성방법을 이용한 염색체 영상의 패턴 분류)

  • 김충석;남재현;장용훈
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.4
    • /
    • pp.839-844
    • /
    • 2003
  • To improve classification accuracy in this paper, we proposed an algorithm for the chromosome image reconstruction in the image preprocessing part. also we proposed the pattern classification method using the hierarchical multilayer neural network(HMNN) to classify the chromosome karyotype. It reconstructed chromosome images for twenty normal human chromosome by the image reconstruction algorithm. The four morphological and ten density feature parameters were extracted from the 920 reconstructed chromosome images. The each combined feature parameters of ten human chromosome images were used to learn HMNN(Hierarchical Multilayer Neural Network) and the rest of them were used to classify the chromosome images. The experimental results in this paper were composed to optimized HMNN and also obtained about 98.26% to recognition ratio.

Searching Location of Chromosome Using Statistical Method (통계적 산출방법을 이용한 염색체 위치 탐색)

  • Song, J.Y.;Kim, J.B.;Yoon, Y.R.;Lee, Y.S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.05
    • /
    • pp.49-53
    • /
    • 1995
  • In this paper, we classify between the chromosome and blood cell, and find the location of chromosome. First, the gray level images be the binary images using the threshold method. Then, the spot noises are removed by the morphological filtering. Features are obtained using the updated Run length(RL) coding and are classified using the Bayes decision rule. The performances of classification are 83.3% in chromosome and 93.3% in blood cell. Because each sub-images ($256{\times}256$) is obtained from the full image($512{\times}512$), we realize the location of chromosome if we get the corrected chromosome classifications.

  • PDF

Implementation on Optimal Pattern Classifier of Chromosome Image using Neural Network (신경회로망을 이용한 염색체 영상의 최적 패턴 분류기 구현)

  • Chang, Y.H.;Lee, K.S.;Chong, H.H.;Eom, S.H.;Lee, Y.W.;Jun, G.R.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.290-294
    • /
    • 1997
  • Chromosomes, as the genetic vehicles, provide the basic material for a large proportion of genetic investigations. The human chromosome analysis is widely used to diagnose genetic disease and various congenital anomalies. Many researches on automated chromosome karyotype analysis has been carried out, some of which produced commercial systems. However, there still remains much room for improving the accuracy of chromosome classification. In this paper, we propose an optimal pattern classifier by neural network to improve the accuracy of chromosome classification. The proposed pattern classifier was built up of two-step multi-layer neural network(TMANN). We are employed three morphological feature parameters ; centromeric index(C.I.), relative length ratio(R.L.), and relative area ratio(R.A.), as input in neural network by preprocessing twenty human chromosome images. The results of our experiments show that our TMANN classifier is much more useful in neural network learning and successful in chromosome classification than the other classification methods.

  • PDF

Cooperative Behavior of Distributed Autonomous Robotic Systems Based on Schema Co-Evolutionary Algorithm

  • Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.185-190
    • /
    • 2002
  • In distributed autonomous robotic systems (DARS), each robot must behave by itself according to its states ad environments, and if necessary, must cooperate with other robots in order to carry out their given tasks. Its most significant merit is that they determine their behavior independently, and cooperate with other robots in order to perform the given tasks. Especially, in DARS, it is essential for each robot to have evolution ability in order to increase the performance of system. In this paper, a schema co-evolutionary algorithm is proposed for the evolution of collective autonomous mobile robots. Each robot exchanges the information, chromosome used in this algorithm, through communication with other robots. Each robot diffuses its chromosome to two or more robots, receives other robot's chromosome and creates new species. Therefore if one robot receives another robot's chromosome, the robot creates new chromosome. We verify the effectiveness of the proposed algorithm by applying it to cooperative search problem.

The Genetic Algorithm using Variable Chromosome with Chromosome Attachment for decision making model (의사결정 모델을 위한 염색체 비분리를 적용한 가변 염색체 유전 알고리즘)

  • Park, Kang-Moon;Shin, Suk-Hoon;Chi, Sung-Do
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.4
    • /
    • pp.1-9
    • /
    • 2017
  • The Genetic Algorithm(GA) is a global search algorithm based on biological genetics. It is widely used in various fields such as industrial applications, artificial neural networks, web applications and defense industry. However, conventional Genetic Algorithm has difficulty maintaining feasibility in complicated situations due to its fixed number of chromosomes. This study proposes the Genetic Algorithm using variable chromosome with chromosome attachment. And in order to verify the implication of changing number of chromosomes in the simulation, it applies the Genetic Algorithm using variable chromosome with chromosome attachment to antisubmarine High Value Unit(HVU) escort mission simulation. As a result, the Genetic Algorithm using variable chromosome has produced complex strategies faster than the conventional method, indicating the increase of the number of chromosome during the process.