• 제목/요약/키워드: Chromatic Number (${\chi}(G)$)

검색결과 13건 처리시간 0.017초

간선 색칠 문제의 다항시간 알고리즘 (A Polynomial Time Algorithm for Edge Coloring Problem)

  • 이상운
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권11호
    • /
    • pp.159-165
    • /
    • 2013
  • 본 논문은 NP-완전 문제인 간선 색칠과 그래프 부류 결정 문제를 동시에 해결하는 O(E)의 다항시간 알고리즘을 제안하였다. 제안된 알고리즘은 최대차수-최소차수 정점 쌍 간선을 단순히 선택하는 방법으로 간선 채색수 ${\chi}^{\prime}(G)$를 결정하였다. 결정된 ${\chi}^{\prime}(G)$${\Delta}(G)$ 또는 ${\Delta}(G)+1$을 얻는다. 결국, 알고리즘 수행 결과 얻은 ${\chi}^{\prime}(G)$로부터 ${\chi}^{\prime}(G)={\Delta}(G)$이면 부류 1, ${\chi}^{\prime}(G)={\Delta}(G)+1$이면 부류 2로 분류할 수 있다. 또한, 미해결 문제로 알려진 "최대차수가 6인 단순, 평면 그래프는 부류 1이다."라는 Vizing의 평면 그래프 추정도 증명하였다.

Cospectral and hyper-energetic self complementary comparability graphs

  • Merajuddin, Merajuddin;Kirmani, S.A.K.;Ali, Parvez;Pirzada, S.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제11권3호
    • /
    • pp.65-75
    • /
    • 2007
  • A graph G is self-complementary (sc) if it is isomorphic to its complement. G is perfect if for all induced subgraphs H of G, the chromatic number of H (denoted ${\chi}$(H)) equals the number of vertices in the largest clique in H (denoted ${\omega}$(H)). An sc graph which is also perfect is known as sc perfect graph. A comparability graph is an undirected graph if it can be oriented into transitive directed graph. An sc comparability (scc) is clearly a subclass of sc perfect graph. In this paper we show that no two non-isomorphic scc graphs with n vertices each, (n<13) have same spectrum, and that the smallest positive integer for which there exists hyper-energetic scc graph is 13.

  • PDF

4-색 알고리즘 (The Four Color Algorithm)

  • 이상운
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권5호
    • /
    • pp.113-120
    • /
    • 2013
  • 본 논문은 지금까지 NP-완전인 난제로 알려진 4-색 정리를 $O(n)$선형시간 복잡도로 수기식과 컴퓨터를 활용하여 증명하는 알고리즘을 제안하였다. 제안된 알고리즘은 그래프 $G=(V_1,E_1)$의 정점 집합 V를 최대 독립집합 $\bar{C_1}$와 최소 정점 피복 집합 $C_1$으로 정확히 양분하는 기법을 적용하여 $\bar{C_1}$에 첫 번째 색을 배정하고, $C_1$ 집합의 정점들로 축소된 연결 그래프 $G=(V_2,E_2)$를 대상으로 $\bar{C_2}$$C_2$로 양분하여 $\bar{C_2}$에 두 번째 색을 지정하였다. $C_2$ 집합의 정점들로 축소된 연결 그래프 $G=(V_3,E_3)$를 대상으로 $\bar{C_3}$$C_3$로 양분하여 $\bar{C_3}$에 세 번째 색을 지정하였다. 마지막으로$C_3$$\bar{C_4}$로 하여 4번째 색을 배정하였다. 2개의 실제 지도 그래프와 2개의 평면 그래프를 대상으로 제안된 알고리즘을 적용한 결과 모든 그래프에서 채색수 ${\chi}(G)=4$를 찾는데 성공하였다. 결국, 제안된 "4-색 알고리즘"은 평면 그래프의 4-색을 결정하는 일반적인 알고리즘으로 적용할 수 있을 것이다.