• 제목/요약/키워드: Chromatic Number (${\chi}(G)$)

검색결과 13건 처리시간 0.028초

평면의 채색수 알고리즘 (The Chromatic Number Algorithm in a Planar Graph)

  • 이상운
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권5호
    • /
    • pp.19-25
    • /
    • 2014
  • 본 논문은 평면상의 거리가 1인 인접 정점들에 대해 서로 다른 색을 칠할 경우 최대로 필요한 색인 채색수를 찾는 문제를 연구하였다. 지금까지 채색수 상한 값은 $4{\leq}{\chi}(G){\leq}7$로 알려져 있으며, Hadwiger-Nelson은 ${\chi}(G){\leq}7$, Soifer는 ${\chi}(G){\leq}9$를 제안하였다. 먼저, 최소로 필요로 하는 채색수를 구하는 알고리즘을 제안하고, Hadwiger-Nelson의 정육각형 그래프를 대상으로 채색수를 구한 결과 ${\chi}(G)=3$이 될 수 있음을 보였다. Hadwiger-Nelson의 정육각형 그래프를 12개 인접 정점으로 가정할 경우 ${\chi}(G)=4$를 구하였다. 또한, Soifer의 8개 인접 정점 정사각형 그래프에 대해 채색수를 구한 결과 ${\chi}(G)=4$임을 보였다. 결국, 제안된 알고리즘은 최소 차수 정점부터 색을 배정하는 단순한 다항시간 규칙을 적용하여 평면의 최대 채색수는 ${\chi}(G)=4$임을 제안한다.

ON GRAPHS WITH EQUAL CHROMATIC TRANSVERSAL DOMINATION AND CONNECTED DOMINATION NUMBERS

  • Ayyaswamy, Singaraj Kulandaiswamy;Natarajan, Chidambaram;Venkatakrishnan, Yanamandram Balasubramanian
    • 대한수학회논문집
    • /
    • 제27권4호
    • /
    • pp.843-849
    • /
    • 2012
  • Let G = (V, E) be a graph with chromatic number ${\chi}(G)$. dominating set D of G is called a chromatic transversal dominating set (ctd-set) if D intersects every color class of every ${\chi}$-partition of G. The minimum cardinality of a ctd-set of G is called the chromatic transversal domination number of G and is denoted by ${\gamma}_{ct}$(G). In this paper we characterize the class of trees, unicyclic graphs and cubic graphs for which the chromatic transversal domination number is equal to the connected domination number.

THE EQUITABLE TOTAL CHROMATIC NUMBER OF THE GRAPH $HM(W_n)$

  • Wang, Haiying;Wei, Jianxin
    • Journal of applied mathematics & informatics
    • /
    • 제24권1_2호
    • /
    • pp.313-323
    • /
    • 2007
  • The equitable total chromatic number ${\chi}_{et}(G)$ of a graph G is the smallest integer ${\kappa}$ for which G has a total ${\kappa}$-coloring such that the number of vertices and edges in any two color classes differ by at most one. In this paper, we determine the equitable total chromatic number of one class of the graphs.

COMBINATORIAL PROOF FOR e-POSITIVITY OF THE POSET OF RANK 1

  • Lee, Jaejin
    • Korean Journal of Mathematics
    • /
    • 제16권3호
    • /
    • pp.425-437
    • /
    • 2008
  • Let P be a poset and G = G(P) be the incomparability graph of P. Stanley [7] defined the chromatic symmetric function $X_{G(P)}$ which generalizes the chromatic polynomial ${\chi}_G$ of G, and showed all coefficients are nonnegative in the e-expansion of $X_{G(P)}$ for a poset P of rank 1. In this paper, we construct a sign reversing involution on the set of special rim hook P-tableaux with some conditions. It gives a combinatorial proof for (3+1)-free conjecture of a poset P of rank 1.

  • PDF

TOTAL COLORINGS OF PLANAR GRAPHS WITH MAXIMUM DEGREE AT LEAST 7 AND WITHOUT ADJACENT 5-CYCLES

  • Tan, Xiang
    • 대한수학회보
    • /
    • 제53권1호
    • /
    • pp.139-151
    • /
    • 2016
  • A k-total-coloring of a graph G is a coloring of $V{\cup}E$ using k colors such that no two adjacent or incident elements receive the same color. The total chromatic number ${\chi}^{{\prime}{\prime}}(G)$ of G is the smallest integer k such that G has a k-total-coloring. Let G be a planar graph with maximum degree ${\Delta}$. In this paper, it's proved that if ${\Delta}{\geq}7$ and G does not contain adjacent 5-cycles, then the total chromatic number ${\chi}^{{\prime}{\prime}}(G)$ is ${\Delta}+1$.

THE CLASSIFICATION OF COMPLETE GRAPHS $K_n$ ON f-COLORING

  • ZHANG XIA;LIU GUIZHEN
    • Journal of applied mathematics & informatics
    • /
    • 제19권1_2호
    • /
    • pp.127-133
    • /
    • 2005
  • An f-coloring of a graph G = (V, E) is a coloring of edge set E such that each color appears at each vertex v $\in$ V at most f(v) times. The minimum number of colors needed to f-color G is called the f-chromatic index $\chi'_f(G)$ of G. Any graph G has f-chromatic index equal to ${\Delta}_f(G)\;or\;{\Delta}_f(G)+1,\;where\;{\Delta}_f(G)\;=\;max\{{\lceil}\frac{d(v)}{f(v)}{\rceil}\}$. If $\chi'_f(G)$= ${\Delta}$f(G), then G is of $C_f$ 1 ; otherwise G is of $C_f$ 2. In this paper, the classification problem of complete graphs on f-coloring is solved completely.

[r, s, t; f]-COLORING OF GRAPHS

  • Yu, Yong;Liu, Guizhen
    • 대한수학회지
    • /
    • 제48권1호
    • /
    • pp.105-115
    • /
    • 2011
  • Let f be a function which assigns a positive integer f(v) to each vertex v $\in$ V (G), let r, s and t be non-negative integers. An f-coloring of G is an edge-coloring of G such that each vertex v $\in$ V (G) has at most f(v) incident edges colored with the same color. The minimum number of colors needed to f-color G is called the f-chromatic index of G and denoted by ${\chi}'_f$(G). An [r, s, t; f]-coloring of a graph G is a mapping c from V(G) $\bigcup$ E(G) to the color set C = {0, 1, $\ldots$; k - 1} such that |c($v_i$) - c($v_j$ )| $\geq$ r for every two adjacent vertices $v_i$ and $v_j$, |c($e_i$ - c($e_j$)| $\geq$ s and ${\alpha}(v_i)$ $\leq$ f($v_i$) for all $v_i$ $\in$ V (G), ${\alpha}$ $\in$ C where ${\alpha}(v_i)$ denotes the number of ${\alpha}$-edges incident with the vertex $v_i$ and $e_i$, $e_j$ are edges which are incident with $v_i$ but colored with different colors, |c($e_i$)-c($v_j$)| $\geq$ t for all pairs of incident vertices and edges. The minimum k such that G has an [r, s, t; f]-coloring with k colors is defined as the [r, s, t; f]-chromatic number and denoted by ${\chi}_{r,s,t;f}$ (G). In this paper, we present some general bounds for [r, s, t; f]-coloring firstly. After that, we obtain some important properties under the restriction min{r, s, t} = 0 or min{r, s, t} = 1. Finally, we present some problems for further research.

SOME PROPERTIES ON f-EDGE COVERED CRITICAL GRAPHS

  • Wang, Jihui;Hou, Jianfeng;Liu, Guizhen
    • Journal of applied mathematics & informatics
    • /
    • 제24권1_2호
    • /
    • pp.357-366
    • /
    • 2007
  • Let G(V, E) be a simple graph, and let f be an integer function on V with $1{\leq}f(v){\leq}d(v)$ to each vertex $v{\in}V$. An f-edge cover-coloring of a graph G is a coloring of edge set E such that each color appears at each vertex $v{\in}V$ at least f(v) times. The f-edge cover chromatic index of G, denoted by ${\chi}'_{fc}(G)$, is the maximum number of colors such that an f-edge cover-coloring of G exists. Any simple graph G has an f-edge cover chromatic index equal to ${\delta}_f\;or\;{\delta}_f-1,\;where\;{\delta}_f{=}^{min}_{v{\in}V}\{\lfloor\frac{d(v)}{f(v)}\rfloor\}$. Let G be a connected and not complete graph with ${\chi}'_{fc}(G)={\delta}_f-1$, if for each $u,\;v{\in}V\;and\;e=uv{\nin}E$, we have ${\chi}'_{fc}(G+e)>{\chi}'_{fc}(G)$, then G is called an f-edge covered critical graph. In this paper, some properties on f-edge covered critical graph are discussed. It is proved that if G is an f-edge covered critical graph, then for each $u,\;v{\in}V\;and\;e=uv{\nin}E$ there exists $w{\in}\{u,v\}\;with\;d(w)\leq{\delta}_f(f(w)+1)-2$ such that w is adjacent to at least $d(w)-{\delta}_f+1$ vertices which are all ${\delta}_f-vertex$ in G.

Hadwiger 추측의 반증 (Disproof of Hadwiger Conjecture)

  • 이상운
    • 한국인터넷방송통신학회논문지
    • /
    • 제14권5호
    • /
    • pp.263-269
    • /
    • 2014
  • 본 논문은 지금까지 미해결 문제로 알려진 정점 색칠 문제에 대한 Hadwiger 추측의 반증을 제시하였다. Hadwiger 추측은 "모든 $K_k$-minor free 그래프는 k-1개의 색으로 칠할 수 있다. 즉, $K_k$-마이너를 얻으면 ${\chi}(G)=k$이다." Hadwiger 추측을 적용하여 정점 색칠을 할 경우, 먼저 NP-완전 (NP-complete)인 $K_k$-마이너를 구하여 ${\chi}(G)=k$를 결정하고, 다시 NP-완전인 정점 색칠 문제를 풀어야 한다. Hadwiger 추측을 반증하기 위해 본 논문은 정점 색칠의 정확한 해를 O(V)의 선형시간으로 구하는 알고리즘을 제시하였다. 제안된 알고리즘은 그래프의 최소 차수를 가진 정점을 최대독립집합 (MIS)으로 하고, MIS 정점의 인접 정점 간선을 삭제한 축소된 그래프에 대해 이 과정을 반복하면서 하나의 색을 가진 MIS를 얻는다. 다음으로 MIS 정점의 간선을 삭제한 축소된 그래프에 대해 동일한 과정을 수행하여 MIS의 개수가 정점 채색수 ${\chi}(G)=k$가 되는 해를 얻는다. 제안된 알고리즘을 적용하여 NP-완전 문제인 완전 색칠 (total coloring) 채색수 ${\chi}^{{\prime}{\prime}}(G)$의 해를 구하는 알고리즘을 제안하였다. 제안된 알고리즘을 $K_4$-마이너 그래프에 적용한 결과 ${\chi}(G)=4$가 아닌 ${\chi}(G)=3$을 얻었다. 결국, Hadwiger 추측은 모든 그래프에 대해 적용되지 않음을 알 수 있다. 제안된 알고리즘은 마이너를 구하지 않으며, 주어진 그래프에 대해 직접 ${\chi}(G)=k$인 독립집합 마이너를 구하여 각 독립집합 정점들에 동일한 색을 배정하는 단순한 방법이다.

정점 색칠 문제의 다항시간 알고리즘 (A Polynomial Time Algorithm for Vertex Coloring Problem)

  • 이상운;최명복
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권7호
    • /
    • pp.85-93
    • /
    • 2011
  • 본 논문은 지금까지 NP-완전인 난제로 알려진 정점 색칠 문제를 선형시간 복잡도로 해결한 알고리즘을 제안하였다. 제안된 알고리즘은 그래프 G=(V,E)의 최소 채색수 ${\chi}(G)$=k를 결정하기 위해 사전에 k값을 알지 못한다는 가정에 기반하고 있다. 단지 주어진 그래프를 독립집합 $\overline{C}$와 정점 피복 집합 C로 정확히 양분하여 $\overline{C}$에 색을 배정하는 방법을 적용하였다. 독립집합 $\overline{C}$의 원소는 ${\delta}(G)$인 정점 ${\upsilon}$가, C의 원소는 정점 ${\upsilon}$의 인접 정점들 u가배정된다. 축소된 그래프 C는 다시 $\overline{C}$와 C로 양분되며, 이 과정을 C의 간선이 없을 때까지 수행한다. 26개의 다양한 그래프를 대상으로 제안된 알고리즘을 적용한 결과 정점 ${\upsilon}$를 선택하는 횟수는 정점의 수 n보다 작은 값을 나타내었으며, ${\chi}(G)$=k를 찾는데 성공하였다.